Skip to main content
Log in

Hybrid Model of Erythropoiesis

  • Original Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A hybrid model of cell dynamics is presented. It is illustrated by model examples and applied to study erythropoiesis (red blood cell production). In this approach, cells are considered as discrete objects while intra-cellular proteins and extra-cellular biochemical substances are described with continuous models. Spatial organization of erythropoiesis occurring in specific structures of the bone marrow, called erythroblastic island, is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aispuru GR, Aguirre MV, Aquino-Esperanza JA, Lettieri CN, Juaristi JA, Brandan NC (2008) Erythroid expansion and survival in response to acute anemia stress: the role of EPO receptor, GATA-1, Bcl-xL and caspase-3. Cell Biol Int 32(8):966–978

    Article  Google Scholar 

  • Anderson ARA, Rejniaka KA, Gerleea P, Quaranta V (2007) Modelling of cancer growth, evolution and invasion: bridging scales and models. Math Model Nat Phenom 2(3):1–29

    Article  Google Scholar 

  • Bessonov N, Kurbatova P, Volpert V (2010) Particle dynamics modelling of cell populations. Math Model Nat Phenom. JANO9-the 9th international conference on numerical analysis and optimization 5(7):42–47

    Article  Google Scholar 

  • Bessonov N, Crauste F, Fischer S, Kurbatova P, Volpert V (2011) Application of hybrid models to blood cell production in the bone marrow. Math Model Nat Phenom 6(7):2–12

    Article  Google Scholar 

  • Bessonov N, Kurbatova P, Volpert V (2013) Pattern formation in hybrid models of cell populations. In: Capasso V et al (eds) Pattern formation in morphogenesis. Springer Proceedings in Mathematics 15, Springer, Berlin, pp 107–119

  • Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–478

    Google Scholar 

  • Crauste F, Demin I, Gandrillon O, Volpert V (2010) Mathematical study of feedback control roles and relevance in stress erythropoiesis. J Theor Biol 263:303–316

    Article  Google Scholar 

  • De Maria R, Testa U, Luchetti L, Zeuner A, Stassi G, Pelosi E, Riccioni R, Felli N, Samoggia P, Peschle C (1999) Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 93:796–803

    Google Scholar 

  • Dillon R, Owen M, Painter K (2008) A single-cell-based model of multicellular growth using the immersed boundary method. AMS Contemp Math 466:1–15

    Google Scholar 

  • Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. Silico Biol 2:393–406

    Google Scholar 

  • Fischer S, Kurbatova P, Bessonov N, Gandrillon O, Volpert V, Crauste F (2012) Modelling erythroblastic islands: using a hybrid model to assess the function of central macrophage. J Theor Biol 298:92–106

    Article  Google Scholar 

  • Gandrillon O (2002) The v-erbA oncogene. Assessing its differentiation-blocking ability using normal chicken erythrocytic progenitor cells. Methods Mol Biol 202:91–107

    Google Scholar 

  • Gandrillon O, Schmidt U, Beug H, Samarut J (1999) TGF-beta cooperates with TGF-alpha to induce the self-renewal of normal erythrocytic progenitors: evidence for an autocrine mechanism. Embo J 18:2764–2781

    Article  Google Scholar 

  • Giverso C, Scianna M, Preziosi L, Lo Buono N, Funaro A (2010) Individual cell-based model for in-vitro mesothelial invasion of ovarian cancer. Math Model Nat Phenom 5(1):203–223

    Article  Google Scholar 

  • Jeon J, Quaranta V, Cummings PT (2010) An off-lattice hybrid discrete-continuum model of tumor growth and invasion. Biophys J 98(1):37–47

    Article  Google Scholar 

  • Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer JP (2005) A multiscale model for avascular tumor growth. Biophys J 289(6):3884–3894

    Article  Google Scholar 

  • Karttunen M, Vattulainen I, Lukkarinen A (2004) A novel methods in soft matter simulations. Springer, Berlin

    Book  Google Scholar 

  • Koulnis M, Liu Y, Hallstrom K, Socolovsky M (2011) Negative autoregulation by Fas stabilizes adult erythropoiesis and accelerates its stress response, PLoS One 6(7):e21192

    Google Scholar 

  • Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381

    Article  Google Scholar 

  • Kurbatova P, Bernard S, Bessonov N, Crauste F, Demin I, Dumontet C, Fischer S, Volpert V (2011) Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J App Math 71(6):2246–2268

    Article  Google Scholar 

  • McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4):673–702

    Article  Google Scholar 

  • Ramis-Conde I, Drasdo D, Anderson ARA, Mark A, Chaplain J (2008) Modeling the influence of the E-Cadherin–Catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 95(1):155–165

    Article  Google Scholar 

  • Rhodes MM, Kopsombut P, Bondurant MC, Price JO, Koury MJ (2008) Adherence to macrophages in erythroblastic islands enhances erythroblast proliferation and increases erythrocyte production by a different mechanism than erythropoietin. Blood 111(3):1700–1708

    Google Scholar 

  • Rubiolo C, Piazzolla D, Meissl K, Beug H, Huber JC, Kolbus A, Baccarini M (2006) A balance between Raf-1 and Fas expression sets the pace of erythroid differentiation. Blood 108:152–159

    Article  Google Scholar 

  • Sawyer ST, Jacobs-Helber SM (2000) Unraveling distinct intracellular signals that promote survival and proliferation: study of erythropoietin, stem cell factor, and constitutive signaling in leukemic cells. J Hematother Stem Cell Res 9:21–29

    Article  Google Scholar 

  • Scianna M, Merks RMH, Preziosi L, Medico E (2009) Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. J Theor Biol 260(1):151–160

    Article  Google Scholar 

  • Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comput Model 41(10):1137–1156

    Article  Google Scholar 

  • Tsiftsoglou AS, Vizirianakis IS, Strouboulis J (2009) Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life 61(8):800–830

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Prof. Mark Koury and all members of the INRIA Team DRACULA for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kurbatova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurbatova, P., Eymard, N. & Volpert, V. Hybrid Model of Erythropoiesis. Acta Biotheor 61, 305–315 (2013). https://doi.org/10.1007/s10441-013-9188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-013-9188-2

Keywords

Navigation