Skip to main content
Log in

Logic and Grammar

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

Grammar can be formulated as a kind of substructural propositional logic. In support of this claim, we survey bare Gentzen style deductive systems and two kinds of non-commutative linear logic: intuitionistic and compact bilinear logic. We also glance at their categorical refinements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajdukiewicz, K. 1935, Die Syntaktische Konnexitàt, Studia Philosophica 1:1–27. English translation: Syntactic connection, in S. McCall (ed.), Polish Logic, Oxford, Clarendon Press, 1967.

  2. Bar-Hillel Y. (1953) A quasi-arithmetical notation for syntactic description. Language 29: 47–58

    Article  Google Scholar 

  3. Bar-Hillel Y. (1964) Language and Information: Selected Essays. Palo Alto, Addison-Wesley

    Google Scholar 

  4. Benson D. B. (1970) Syntax and semantics, a categorical view. Information and Control 17: 145–166

    Article  Google Scholar 

  5. Bhargava M., Lambek J. (1995) A rewrite system of the Western Pacific: Lounsbury’s analysis of Trobriand kinship terminology. Theoretical Linguistics 21: 241–253

    Article  Google Scholar 

  6. Bourbaki N. (1948) Algèbre linéaire. Hermann, Paris

    Google Scholar 

  7. Brame, M. 1984, 1985, 1987, Recursive categorical syntax and morphology I, II, III, Linguistic Analysis 14,15,17.

  8. Buszkowski, W. 2001, Lambek grammars based on pregroups, in P. G. De Groote et al. (eds.), Logical aspects of computational linguistics, LNAI 2099, Berlin, Springer.

  9. Buszkowski, W. 2002, Cut elimination for the Lambek calculus of adjoints, in V. M. Abrusci et al. (eds.), New perspectives in logic and formal linguistics, Rome, Bulzoni.

  10. Casadio C., Lambek J. (2002) A tale of four grammars. Studia Logica 71: 315–329

    Article  Google Scholar 

  11. Chomsky N. (1957) Syntactic Structures. Mouton, The Hague

    Google Scholar 

  12. Chomsky N. (1980) Rules and representations. Columbia University Press, New York

    Google Scholar 

  13. Curry, H. B. 1961, Some logical aspects of grammatical structure, in R. Jacobson (ed.), Structure of language and its mathematical aspects, Providence, R.I., AMS.

  14. Francez N., Kaminski M. (2007) Commutation-Augmented Pregroup Grammars and Mildly Context-Sensitive Languages. Studia Logica 87: 295–321

    Article  Google Scholar 

  15. Girard J.-Y. (1987) Linear logic. Theoretical Computer Science 50: 1–102

    Article  Google Scholar 

  16. Harris Z. S. (1966) A cyclic cancellation automaton for sentence well-formedness. International Computation Centre Bulletin 5: 69–94

    Google Scholar 

  17. Harris Z. S. (1968) Mathematical structure of language. John Wiley and Sons, New York

    Google Scholar 

  18. Kobele, G. M. 2008, Agreement bottlenecks in Italian, in C. Casadio et al. (eds.), Computational algebraic approaches to natural languages, Milan, Polimetrica.

  19. Kusalik, T. 2008, Product pregroups as an alternative to inflectors, in C. Casadio et al. (eds.), Computational algebraic approaches to natural languages, Milan, Polimetrica.

  20. Lambek J. (1958) The mathematics of sentence structure. American Mathematical Monthly 65: 154–170

    Article  Google Scholar 

  21. Lambek, J. 1999a, Deductive systems and categories in linguistics, in H. J. Ohlbach et al. (eds.), Logic, Language and Reasoning, Dordrecht, Kluwer.

  22. Lambek, J. 1999b, Type grammar revisited, in Lecomte et al. (eds.), Logical aspects of computational linguistics LNCS/LNAI 1582, Berlin, Springer.

  23. Lambek, J. 2004, Bicategories in algebra and linguistics, in T. Ehrhard et al. (eds.), Linear logic in computer science, London Mathematical Society Lecture Notes Series 316, Cambridge University Press.

  24. Lambek J. (2008) From word to sentence. Polimetrica, Milan

    Google Scholar 

  25. Lambek J. (2010) Exploring feature agreement in French with parallel pregroup computations. Journal of Logic, Language and Information 19: 75–88

    Article  Google Scholar 

  26. Lambek, J., and N. S. Yanofsky 2008, A computational approach to Biblical Hebrew, in C. Casadio et al. (eds.), Computational algebraic approaches to natural languages, Milan, Polimetrica.

  27. Lawvere, F. W., Toposes, Algebraic Geometry and Logic, Lecture Note in Mathematics 274, New York, Springer.

  28. Miller G. A. (1956) The magical number seven plus or minus two. Psychological Review 63: 81–97

    Article  Google Scholar 

  29. Mac Lane S. (1971) Categories for the working mathematician. Springer, New York

    Google Scholar 

  30. Montague R. (1974) Formal Philosophy: Selected Papers. Yale University Press, New Haven

    Google Scholar 

  31. Moortgat M. (1988) Categorial Investigations. Foris, Dordrecht

    Google Scholar 

  32. Moortgat, M. 1997, Categorial type logics, in J. van Benthem et al. (eds.), Handbook of Logic and Language, Amsterdam, Elsevier.

  33. Pentus, M. 1993, Lambek grammars are context free, in Proceedings of the 8th annual symposium of logic in Computer Science, pp. 429–433.

  34. Preller A. (2010) Polynomial pregroup grammars pursue context sensitive languages. Linguistic Analysis 36: 483

    Google Scholar 

  35. Stabler, E. P. 2008, Tupled pregroup grammars, in C. Casadio et al. (eds.), Computational algebraic approaches to natural languages, Milan, Polimetrica.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Lambek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambek, J. Logic and Grammar. Stud Logica 100, 667–681 (2012). https://doi.org/10.1007/s11225-012-9426-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-012-9426-7

Keywords

Navigation