Skip to main content

Advertisement

Log in

Qualitative Quantitative and Experimental Concept Possession, Criteria for Identifying Conceptual Change in Science Education

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

Students sometimes misunderstand or misinterpret scientific content because of persistent misconceptions that need to be overcome by science education—a learning process typically called conceptual change. The acquisition of scientific content matter thus requires a transformation of the initial knowledge-state of a common-sense picture of the world to an outcome state of a scientific conception articulated with scientific concepts, which the learner did not possess prior to learning. This paper introduces a taxonomy based on the idea that multiple operational criteria are needed to evaluate conceptual change into scientific concepts. Three sets of criteria—qualitative, quantitative and experimental—are identified, and their interrelations in the process of conceptual change are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Carey (1985), Posner et al. (1982), Hewson (1984), Strike and Posner (1982), Chi (1992), DiSessa (1988, 1993), Vosniadou and Brewer (1992), Vosniadou (2008a, b).

  2. Brown and Clement (1989), Bowden et al. (1992), Chi et al. (1981), DiSessa et al. (2004), Hestenes et al. (1992), Larkin et al. (1980), McCloskey (1983).

References

  • Baxter, J. (1989). Children’s understanding of familiar astronomical events. International Journal of Science Education, 11(Special Issue), 502–513.

    Google Scholar 

  • Biggs, J. (2003). Teaching for quality learning at university (2nd ed.). The Society for Research into Higher Education and Open University Press: Buckingham.

    Google Scholar 

  • Bowden, J., Dall’Alba, G., Martin, E., Laurillard, D., Marton, F., Masters, G., et al. (1992). Displacement, velocity, and fames of reference: Phenomenographic studies of students’ understanding and some implications for teaching and assessment. American Journal of Physics, 60(3), 262–269.

    Article  Google Scholar 

  • Brown, D. E., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning: Abstract transfer versus explanatory model construction. Instructional Science, 18, 237–261.

    Article  Google Scholar 

  • Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.

    Google Scholar 

  • Chi, M. (1992). Conceptual change within and across ontological categories: Examples from learning an discovery in science. In R. Giere (Ed.), Cognitive models of science. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

    Article  Google Scholar 

  • Chi, M., & Slotta, J. (1993). The ontological coherence of intuitive physics. Cognition & Instruction, 10(2 & 3), 249–260.

    Article  Google Scholar 

  • Chi, M. T. H., Slotta, J., & DeLeeuw, N. (1994). From things to process: A theory of conceptual change for learning science concepts. Learning and Instruction, 4(1), 27–43.

    Article  Google Scholar 

  • DiSessa, A. A. (1988). Knowledge in pieces. In G. Forman & P. Pufall (Eds.), Constructivism in the computer age (pp. 49–70). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • DiSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2 & 3), 105–225.

    Article  Google Scholar 

  • DiSessa, A. A., Gillespie, N. M., & Esterly, J. M. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28, 843–900.

    Article  Google Scholar 

  • Feynman, R., & Leighton, R. (1985). Surely you’re joking, Mr. Feynman!: Adventures of a curious character (p. 212ff). W. W. Norton.

  • Galilei, G. (1923/1957). The assayer. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books.

  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30(March 1992), 141–158.

    Article  Google Scholar 

  • Hewson, P. (1984). A conceptual change approach to learning science. European Journal of Science Education, 3, 383–396.

    Article  Google Scholar 

  • Karpicke, J. D. (2008). The critical importance of retrieval for learning. Science, 319, 966–968.

    Article  Google Scholar 

  • Kim, E., & Pak, S. (2002). Students do not overcome conceptual difficulties after solving 1000 traditional problems. American Journal of Physics, 70(7), 759–765.

    Article  Google Scholar 

  • Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Larkin, J. H. (1983). The role of problem representation in physics. In D. Gentner & A. N. Stevens (Eds.), Mental models (pp. 75–98). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

    Article  Google Scholar 

  • McCloskey, M. (1983). Naive theories of motion. In D. Gentner & A. N. Stevens (Eds.), Mental models (pp. 299–324). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Piaget, J. (1998). De la pédagogie. Paris: Odile Jakob.

    Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.

    Article  Google Scholar 

  • Reif, F. (1987). Interpretation of scientific or mathematical concepts: Cognitive issues and instructional implications. Cognitive Science, 11, 395–416.

    Article  Google Scholar 

  • Slotta, J. D., Chi, M. T. H., & Joram, E. (1995). Assessing students misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13(3), 373–400.

    Article  Google Scholar 

  • Spelke, E., & Kinzler, K. (2007). Core knowledge. Developmental Science, 10(1), 89–96.

    Article  Google Scholar 

  • Strike, K. A., & Posner, G. J. (1982). Conceptual change and science teaching. European Journal of Science Education, 4(3), 231–240.

    Article  Google Scholar 

  • Vosniadou, S. (Ed.). (2008a). International handbook of research on conceptual change. New York: Routledge.

    Google Scholar 

  • Vosniadou, S. (2008b). Conceptual change research: An introduction. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. xiii–xxviii). New York: Routledge.

    Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535–585.

    Article  Google Scholar 

  • Wittgenstein, L. (1953) Philosophical Investigations. In G. E. M. Anscombe & R. Rhees (Eds.), (G. E. M. Anscombe, Trans.). Oxford: Blackwell.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto Lappi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lappi, O. Qualitative Quantitative and Experimental Concept Possession, Criteria for Identifying Conceptual Change in Science Education. Sci & Educ 22, 1347–1359 (2013). https://doi.org/10.1007/s11191-012-9459-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-012-9459-3

Keywords

Navigation