Skip to main content
Log in

Mathematical Modeling of Respiratory System Mechanics in the Newborn Lamb

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this paper, a mathematical model of the respiratory mechanics is used to reproduce experimental signal waveforms acquired from three newborn lambs. As the main challenge is to determine specific lamb parameters, a sensitivity analysis has been realized to find the most influent parameters, which are identified using an evolutionary algorithm. Results show a close match between experimental and simulated pressure and flow waveforms obtained during spontaneous ventilation and pleural pressure variations acquired during the application of positive pressure, since root mean square errors equal to 0.0119, 0.0052 and 0.0094. The identified parameters were discussed in light of previous knowledge of respiratory mechanics in the newborn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  • Asher M, Coates A, Collinge J, Milic-Emili J (1982) Measurement of pleural pressure in neonates. J Appl Physiol 52:491–494

    Google Scholar 

  • Athanasiades A, Ghorbel F, Clark JWJ, Niranjan SC, Olansen J, Zwischenberger JB, Bidani A (2000) Energy analysis of a nonlinear model of the normal human lung. J Biol Syst 8:115–139

    Google Scholar 

  • Avanzolini G, Barbini P, Bernardi F, Cevenini G, Gnudi G (2001) Role of the mechanical properties of tracheobronchial airways in determining the respiratory resistance time course. Ann Biomed Eng 29:575–586

    Article  Google Scholar 

  • Calabrese P, Baconnier P, Laouani A, Fontecave-Jallon J, Guméry PY, Eberhard A, Benchetrit G (2010) A simple dynamic model of respiratory pump. Acta Biotheor 58:265–275

    Article  Google Scholar 

  • Costantino ML, Bagnoli P, Dini G, Fiore GB, Soncini M, Corno C, Acocella F, Colombi R (2004) A numerical and experimental study of compliance and collapsibility of preterm lamb tracheae. J Biomech 37:1837–1847

    Article  Google Scholar 

  • Crooke PS, Marini JJ, Hotchkiss JR (2002) Modeling recruitment maneuvers with a variable compliance model for pressure controlled ventilation. Comput Math Methods Med 4:197–207

    Google Scholar 

  • Davey MG, Johns DP, Harding R (1998) Postnatal development of respiratory function in lambs studied serially between birth and 8 weeks. Respir Physiol 113:83–93

    Article  Google Scholar 

  • Davis GM, Coates AL, Dalle D, Bureau MA (1988) Measurement of pulmonary mechanics in the newborn lamb: a comparison of three techniques. J Appl Physiol 64:972–981

    Article  Google Scholar 

  • Davis GM, Coates AL, Papageorgiou A, Bureau MA (1988) Direct measurement of static chest wall compliance in animal and human neonates. J Appl Physiol 65:1093–1098

    Google Scholar 

  • Fontecave-Jallon J, Abdulhay E, Calabrese P, Baconnier P, Guméry PY (2009) A model for mechanical interactions between heart and lungs. Philos Transact A Math Phys Eng Sci 367:4741–4757

    Article  Google Scholar 

  • Frappell PB, MacFarlane PM (2005) Development of mechanics and pulmonary reflexes. Respir Physiol Neurobiol 149:143–154

    Article  Google Scholar 

  • Gappa M, Jackson E, Pilgrim L, Costeloe K, Stocks J (1996) A new microtransducer catheter for measuring esophageal pressure in infants. Pediatr Pulmonol 22:117–124

    Article  Google Scholar 

  • Gaultier C, Praud JP (1990) Respiratory pathology during sleep in children. Rev Mal Respir 7:475–481

    Google Scholar 

  • Golden J (1972) Mathematical modelling of pulmonary airway dynamics. Rice University, Houston

    Google Scholar 

  • Guttmann J, Kessler V, Mols G, Hentschel R, Haberthur C, Geiger K (2000) Continuous calculation of intratracheal pressure in the presence of pediatric endotracheal tubes. Crit Care Med 28:1018–1026

    Article  Google Scholar 

  • Hernández AI, Le Rolle V, Defontaine A, Carrault G (2009) A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation. Philos Trans Math Phys Eng Sci 367:4923–4940

    Article  Google Scholar 

  • Hernández AI, Le Rolle V, Ojeda D, Baconnier P, Fontecave-Jallon J, Guillaud F, Grosse T, Moss RG, Hannaert P, Thomas SR (2011) Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation. Prog Biophys Mol Biol 107(1):169–82

    Article  Google Scholar 

  • Jakubowska AE, Billings K, Johns DP, Hooper SB, Harding R (1993) Respiratory function in lambs after prolonged oligohydramnios during late gestation. Pediatr Res 34:611–617

    Article  Google Scholar 

  • Khirani S, Biot L, Eberhard A, Baconnier P (2001) Positive end expiratory pressure and expiratory flow limitation: a model study. Acta Biotheor 49:277–290

    Article  Google Scholar 

  • Le Rolle V, Hernández AI, Carrault G, Samson N, Praud JP (2008) A model of ventilation used to interpret newborn lamb respiratory signals. IEEE EMBC, Vancouver

  • Liu CH, Niranjan SC, Clark JWJ, San KY, Zwischenberger JB, Bidani A (1998) Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. J Appl Physiol 84:1447–1469

    Google Scholar 

  • Lu K, Clark JWJ, Ghorbel FH, Ware DL, Bidani A (2001) A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol 281:2661–2679

    Google Scholar 

  • Manilal-Reddy PI, Al-Jumaily AM (2009) Understanding the use of continuous oscillating positive airway pressure (bubble CPAP) to treat neonatal respiratory disease: an engineering approach. J Med Eng Tech 33:214–222

    Article  Google Scholar 

  • Mead J (1969) Contribution of compliance of airways to frequency-dependent behavior of lungs. J Appl Physiol 26:670–673

    Google Scholar 

  • Michalewicz Z (1994) Genetic algorithms + Data structures = Evolution programs. Springer, New-York

    Book  Google Scholar 

  • Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174

    Article  Google Scholar 

  • Mortola J (1987) Dynamics of breathing in newborn mammals. Physiol Rev 67:187–243

    Google Scholar 

  • Mount L (1955) The ventilation flow-resistance and compliance of rat lungs. J Physiol 127:157–167

    Google Scholar 

  • Otis B, Mckerrow CB, Bartlett RA, Mead J, Selver-Stone MB, McIlroy NJ, Radford EPJ (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8:427–443

    Google Scholar 

  • Pillow JJ, Hall GL, Karen EW, Jobe AH, Hantos Z, Sly PD (2001) Effects of gestation and antenatal steroid on airway and tissue mechanics in newborn lambs. Am J Respir Crit Care Med 163:1158–1163

    Google Scholar 

  • Pillow JJ, Sly PD, Hantos Z, Bates JHT (2002) Dependence of intrapulmonary pressure amplitudes on respiratory mechanics during high-frequency oscillatory ventilation in preterm lambs. Pediatr Res 52:538–544

    Article  Google Scholar 

  • Pillow JJ, Stocks J, Sly PD, Hantos Z (2005) Partitioning of airway and parenchymal mechanics in unsedated newborn infants. Pediatr Res 58:1210–1215

    Article  Google Scholar 

  • Quatember B (2003) Human respiratory system: simulation of breathing mechanics and gas mixing processes based on a non-linear mathematical model, International conference on health sciences simulation

  • Riddle W, Younes M (1981) A model for the relation between respiratory neural and mechanical outputs. II. Methods. J Appl Physiol 51:979–989

    Google Scholar 

  • Robert R (2007) Modélisation numérique et stratégies de commande du débit expiratoire pour éviter le collapsus des voies respiratoires en ventilation liquidienne totale, University of Sherbrooke

  • Rozanek M, Roubik K (2004) Influence of the changes in pulmonary mechanics upon the suitability of artificial lung ventilation strategy. In: Biomedical engineering, Zurich, Acta Press, TrackNumber: 417–132

  • Schmidt M, Foitzik B, Hochmuth O, Schmalisch G (1998) Computer simulation of the measured respiratory impedance in newborn infants and the effect of the measurement equipment. Med Eng Phys 20:220–228

    Article  Google Scholar 

  • Sly PD, Brown KA, Bates JHT, Spier S, Milic-Emili J (1988) Noninvasive determination of respiratory mechanics during mechanical ventilation of neonates: a review of current and future techniques. Pediatr Pulmonol 4:39–47

    Article  Google Scholar 

  • Thibault S, Calabrese P, Benchetrit GA, Baconnier P (2004) Effects of resistive loading on breathing variability : non linear analysis and modelling approaches. Adv Exp Med Biol 551:293–298

    Article  Google Scholar 

  • Thibault S, Heyer L, Benchetrit GA, Baconnier P (2002) Ventilatory support: a dynamical systems approach. Acta Biotheor 50:269–279

    Article  Google Scholar 

  • Tse Ve Koon K, Thebault C, Le Rolle V, Donal E, Hernández A (2010) Atrioventricular delay optimization in cardiac resynchronization therapy assessed by a computer model. Computers in cardiology belfast, Ireland, pp 333–336

  • Verbraak AF, Bogaard JM, Beneken JE, Hoorn E, Versprille A (1991) Serial lung model for simulation and parameter estimation in body plethysmography. A Med Biol Eng Comput 29:309–317

    Article  Google Scholar 

  • Winkler T, Krause A, Kaiser S (1995) Simulation of mechanical respiration using a multicompartment model for ventilation mechanics and gas exchange. Int J Clin Monit Comput 12:231–239

    Article  Google Scholar 

  • Younes M, Riddle W (1981) A model for the relation between respiratory neural and mechanical outputs. I. Theory. J Appl Physiol 51:963–978

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge Jean-Philippe Gagne for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginie Le Rolle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Rolle, V., Samson, N., Praud, JP. et al. Mathematical Modeling of Respiratory System Mechanics in the Newborn Lamb. Acta Biotheor 61, 91–107 (2013). https://doi.org/10.1007/s10441-013-9175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-013-9175-7

Keywords

Navigation