Skip to main content
Log in

How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the literature on the interpretation of quantum mechanics, not many works attempt to adopt a proactive perspective aimed at seeing how different interpretations can enrich each other through a productive dialogue. In particular, few proposals have been devised to show that different approaches can be clarified by comparing them, and can even complement each other, improving or leading to a more fertile overall approach. The purpose of this paper is framed within this perspective of complementation and mutual enrichment. In particular, the Relational Quantum Mechanics (RQM) and the Modal-Hamiltonian Interpretation (MHI) are compared, highlighting their differences and points of contact. The final purpose is to show that, in spite of their disagreements, they are not contradictory but, on the contrary, they can be made compatible from an overarching perspective and can even complement each other in a fruitful way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rovelli, C.: Relational Quantum Mechanics. Int. J. Theor. Phys. 35, 1637–1678 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Laudisa, F., Rovelli, C.: Relational Quantum Mechanics. In Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy, (Spring 2021 Edition). https://plato.stanford.edu/entries/qm-relational/ (Page numbers are taken from the printed version) (2021). Accessed 9 June 2022

  3. Laudisa, F.: Open problems in relational quantum mechanics. J. Gen. Philos. Sci. 50, 215–230 (2019)

    Article  MathSciNet  Google Scholar 

  4. Muciño, R. Okon, E., Sudarsky, D.: Assessing Relational Quantum Mechanics. https://arXiv.org/2105.13338 (2021)

  5. Rovelli, C.: A response to the Muciño-Okon-Sudarsky’s assessment of Relational Quantum Mechanics. https://arXiv.org/2106.03205 (2021a)

  6. Smerlak, M., Rovelli,: Relational EPR. Found. Phys. 37, 427–445 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brukner, Č.: Qubits are not observers—a no-go theorem. https://arxiv.org/:2107.03513 (2021)

  8. Pienaar, J.L.: A quintet of quandaries: five no-go theorems for Relational Quantum Mechanics. https://arXiv.org/2107.00670 (2021)

  9. Rovelli, C.: Relational Quantum Mechanics is about facts, not states: a reply to Pienaar and Brukner. https://arXiv.org/2110.03610 (2021b)

  10. van Fraassen, B.C.: A formal approach to the philosophy of science. In: Colodny, R. (ed.) Paradigms and Paradoxes: The Philosophical Challenge of the Quantum Domain, pp. 303–366. University of Pittsburgh Press, Pittsburgh (1972)

    Google Scholar 

  11. van Fraassen, B.C.: The Einstein-Podolsky-Rosen paradox. Synthese 29, 291–309 (1974)

    Article  Google Scholar 

  12. Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy, (Winter 2021 Edition) https://plato.stanford.edu/entries/qm-modal/ (2021). Accessed 9 June 2022

  13. Kochen, S., Specker, E.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  14. Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fortin, S., Lombardi, O., Martínez González, J.C.: A new application of the modal-Hamiltonian interpretation of quantum mechanics: the problem of optical isomerism. Stud. Hist. Philos. Mod. Phys. 62, 123–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fortin, S., Lombardi, O., Pasqualini, M.: Relational event-time in quantum mechanics. Found. Phys. 52, 10 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Lombardi, O., Castagnino, M., Ardenghi, J.S.: The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Modal-Hamiltonian interpretation of quantum mechanics and Casimir operators: the road to quantum field theory. Int. J. Theor. Phys. 50, 774–791 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lombardi, O., Fortin, S.: The role of symmetry in the interpretation of quantum mechanics. Electron. J. Theor. Phys. 12, 255–272 (2015)

    Google Scholar 

  21. da Costa, N., Lombardi, O.: Quantum mechanics: ontology without individuals. Found. Phys. 44, 1246–1257 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. da Costa, N., Lombardi, O., Lastiri, M.: A modal ontology of properties for quantum mechanics. Synthese 190, 3671–3693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lombardi, O., Dieks, D.: Particles in a quantum ontology of properties. In: Bigaj, T., Wüthrich, C. (eds.) Metaphysics in Contemporary Physics, pp. 123–143. Brill-Rodopi, Leiden (2016)

    Google Scholar 

  24. Fortin, S., Lombardi, O.: Entanglement and indistinguishability in a quantum ontology of properties. Stud. Hist. Philos. Sci. 91, 234–243 (2022)

    Article  Google Scholar 

  25. Omnés, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    Book  MATH  Google Scholar 

  26. Omnés, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton (1999)

    Book  MATH  Google Scholar 

  27. Albert, D., Loewer, B.: Wanted dead or alive: two attempts to solve Schrödinger’s paradox. In Proceedings of the 1990 Biennial Meeting of the Philosophy of Science Association, vol. 1, pp. 277–285. Philosophy of Science Association, East Lansing (1990)

  28. Albert, D., Loewer, B.: Some alleged solutions to the measurement problem. Synthese 88, 87–98 (1991)

    Article  Google Scholar 

  29. Albert, D., Loewer, B.: Non-ideal measurements. Found. Phys. Lett. 6, 297–305 (1993)

    Article  MathSciNet  Google Scholar 

  30. Elby, A.: Why ‘modal’ interpretations don’t solve the measurement problem. Found. Phys. Lett. 6, 5–19 (1993)

    Article  MathSciNet  Google Scholar 

  31. Lombardi, O., Fortin, S., López, C.: Measurement, interpretation and information. Entropy 17, 7310–7330 (2015)

    Article  ADS  Google Scholar 

  32. Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: Perspectives and Foundational Problems in Philosophy of Science, pp. 207–217. Springer, Berlin (2013)

    Chapter  Google Scholar 

  33. van Fraassen, B.C.: Rovelli’s world. Found. Phys. 40, 390–417 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Calosi, C., Mariani, C.: Quantum relational indeterminacy. Stud. Hist. Philos. Mod. Phys. 71, 158–169 (2020)

    Article  MathSciNet  Google Scholar 

  35. Dorato, M.: Rovelli’s relational quantum mechanics, anti-monism, and quantum becoming. In: Marmodoro, A., Yates, D. (eds.) The Metaphysics of Relations, pp. 235–161. Oxford University Press, Oxford (2016)

    Chapter  Google Scholar 

  36. Rovelli, C.: Space is blue and birds fly through it». Philos. Trans. R. Soc. A 376, 20170312 (2018)

    Article  ADS  Google Scholar 

  37. Candiotto, L.: The reality of relations. G. Metafis. 2017, 537–551 (2017)

    Google Scholar 

  38. French, S., Ladyman, J.: In defence of ontic structural realism. In: Bokulich, A., Bokulich, P. (eds.) Scientific Structuralism, pp. 25–42. Springer, Dordrecht (2011)

    Google Scholar 

  39. Ladyman, J.: What is structural realism? Stud. Hist. Philos. Sci. 29, 409–424 (1998)

    Article  Google Scholar 

  40. Ladyman, J., Ross, D.: Every Thing Must Go: Metaphysics Naturalized. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  41. French, S.: Structure as a weapon of the realist. Proc. Aristot. Soc. 106, 170–187 (2006)

    Article  Google Scholar 

  42. Oldofredi, A.: The bundle theory approach to Relational Quantum Mechanics. Found. Phys. 51, 18 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. French, S.: What is this thing called structure? (Rummaging in the toolbox of metaphysics for an answer). http://philsci-archive.pitt.edu/id/eprint/16921 (2020). Accessed 9 June 2022

  44. Rovelli, C.: Incerto tempore, incertisque loci: can we compute the exact time at which a quantum measurement happens? Found. Phys. 28, 1031–1043 (1998)

    Article  MathSciNet  Google Scholar 

  45. Mittelstaedt, P.: The Interpretation of Quantum Mechanics and the Measurement Process. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  46. Dugić, M., Jeknić-Dugić, J.: What is system: the information-theoretic arguments. Int. J. Theor. Phys. 47, 805–813 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Harshman, N.L., Wickramasekara, S.: Tensor product structures, entanglement, and particle scattering. Open. Syst. Inf. Dyn. 14, 341–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Viola, L., Barnum, H.: Entanglement and subsystems, entanglement beyond subsystems, and all that. In: Bokulich, A., Jaeger, G. (eds.) Philosophy of Quantum Information and Entanglement, pp. 16–43. Cambridge University Press, Cambridge (2010)

    Chapter  MATH  Google Scholar 

  49. Earman, J.: Some puzzles and unresolved issues about quantum entanglement. Erkenntnis 80, 303–337 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Harshman, N.L., Ranade, K.S.: Observables can be tailored to change the entanglement of any pure state. Phys. Rev. A 84, 012303 (2011)

    Article  ADS  Google Scholar 

  51. Terra Cunha, M.O., Dunningham, J.A., Vedral, V.: Entanglement in single-particle systems. Proc. R. Soc. A 463, 2277–2286 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Castagnino, M., Fortin, S., Lombardi, O.: Is the decoherence of a system the result of its interaction with the environment? Mod. Phys. Lett. A 25, 1431–1439 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Castagnino, M., Laura, R., Lombardi, O.: A general conceptual framework for decoherence in closed and open systems. Philos. Sci. 74, 968–980 (2007)

    Article  MathSciNet  Google Scholar 

  54. Fortin, S., Lombardi, O.: A top-down view of the classical limit of quantum mechanics. In: Kastner, R.E., Jeknić-Dugić, J., Jaroszkiewicz, G. (eds.) Quantum Structural Studies: Classical Emergence from the Quantum Level, pp. 435–468. World Scientific, Singapore (2016)

    Google Scholar 

  55. Fortin, S., Lombardi, O.: A closed-system approach to decoherence. In: Lombardi, O., Fortin, S., López, C., Holik, F. (eds.) Quantum Worlds. Perspectives on the Ontology of Quantum Mechanics, pp. 345–359. Cambridge University Press, Cambridge (2019)

    Chapter  MATH  Google Scholar 

  56. Fortin, S., Lombardi, O., Castagnino, M.: Decoherence: a closed-system approach. Braz. J. Phys. 44, 138–153 (2014)

    Article  ADS  Google Scholar 

  57. Brown, M.J.: Relational quantum mechanics and the determinacy problem. Br. J. Philos. Sci. 60, 679–695 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Dorato, M.: Rovelli’s relational quantum mechanics, anti-monism and quantum becoming. http://philsci-archive.pitt.edu/9964/ (2013). Accessed 9 June 2022

  59. Busch, P.: The time-energy uncertainty relation. In: Muga, J., Mayato, R.S., Egusquiza, I. (eds.) Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734, pp. 73–105. Springer, Berlin (2008)

    Google Scholar 

  60. Rovelli, C.: Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics? In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, pp. 126–136. Birkhauser, New York (1991)

    Google Scholar 

  61. Lombardi, O., Fortin, S., Pasqualini, M.: Possibility and time in quantum mechanics. Entropy 24, 249 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups, and Quantum Field Theories, NATO ASI Series (Series C: Mathematical and Physical Sciences), vol. 409, pp. 157–287. Springer, Dordrecht (1993)

    Chapter  Google Scholar 

  63. Kuchař, K.: The problem of time in canonical quantization. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, pp. 141–171. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  64. Rovelli, C.: Quantum mechanics without time: a model. Phys. Rev. D 42, 2638–2646 (1990)

    Article  ADS  Google Scholar 

  65. Rovelli, C.: Forget time. Essay written for the FQXi contest on the Nature of Time (2008)

  66. Ruetsche, L.: Measurement error and the Albert-Loewer problem. Found. Phys. Lett. 8, 327–344 (1995)

    Article  MathSciNet  Google Scholar 

  67. Bacciagaluppi, G., Hemmo, M.: Modal interpretations, decoherence and measurements. Stud. Hist. Philos. Mod. Phys. 27, 239–277 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  68. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  69. Adlam, E., Rovelli, C.: Information is physical: cross-perspective links in Relational Quantum Mechanics. https://arXiv.org/2203.13342. (2022)

  70. Shannon, C.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant PICT-04519 of ANCyT, Argentina (O.L), and by Grants PICT-1770 of ANCyT, PIP-14-200901-00272 and PIP-114-200901-00068 of CONICET (J.S.A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lombardi, O., Ardenghi, J.S. How Different Interpretations of Quantum Mechanics can Enrich Each Other: The Case of the Relational Quantum Mechanics and the Modal-Hamiltonian Interpretation. Found Phys 52, 64 (2022). https://doi.org/10.1007/s10701-022-00580-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00580-y

Keywords

Navigation