Skip to main content

Not Individuals, Nor Even Objects: On the Ontological Nature of Quantum Systems

  • Chapter
  • First Online:
Non-Reflexive Logics, Non-Individuals, and the Philosophy of Quantum Mechanics

Part of the book series: Synthese Library ((SYLI,volume 476))

  • 125 Accesses

Abstract

To which ontological category do quantum systems belong? Although we usually speak of particles, it is well known that these peculiar items defy several traditional metaphysical principles. In the present chapter these challenges will be discussed in the light of certain distinctions usually not taken into account in the debate about the ontological nature of quantum systems. On this basis, it will be argued that an ontology of properties without individuals, framed in the algebraic formalism of quantum mechanics, provides adequate answers to the ontological challenges raised by the theory.What kind of item is a quantum system? In the practice of physics it is common to speak of quantum particles, as if they were items of a similar nature to classical items, but obeying different laws of motion. However, as is well known, quantum systems have such peculiar features that they challenge certain ontological principles and categories as understood in traditional metaphysics. In general, these features are analyzed in the context of the so-called problem of indistinguishability, which is a consequence of the particular statistical behavior of quantum systems. But the fact that certain items are “indistinguishable” is not the only difficulty to be overcome in order to elucidate the ontological category of quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardenghi, J. S., Castagnino, M., & Lombardi, O. (2009a). Quantum mechanics: Modal interpretation and Galilean transformations. Foundations of Physics, 39, 1023–1045.

    Article  Google Scholar 

  • Ardenghi, J. S., Castagnino, M., & Lombardi, O. (2009b). Modal-Hamiltonian interpretation of quantum mechanics and Casimir operators: The road to quantum field theory. International Journal of Theoretical Physics, 50, 774–791.

    Article  Google Scholar 

  • Armstrong, D. M. (1989). Universals: An opinionated introduction. Westview.

    Google Scholar 

  • Armstrong, D. M. (1993). A world of states of affairs. Philosophical Perspectives, 7, 429–440.

    Article  Google Scholar 

  • Ballentine, L. (1998). Quantum mechanics: A modern development. World Scientific.

    Book  Google Scholar 

  • Beltrametti, E., & Cassinelli, G. (1981). The logic of quantum mechanics. Addison-Wesley.

    Google Scholar 

  • Ben-Menahem, Y. (2018). Causation in science. Princeton University Press.

    Book  Google Scholar 

  • Benovsky, J. (2008). The bundle theory and the substratum theory: Deadly enemies or twin brothers? Philosophical Studies, 141, 175–190.

    Article  Google Scholar 

  • Berkovitz, J. (2016). Action at a distance in quantum mechanics. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2016 Edition). https://plato.stanford.edu/archives/spr2016/entries/qm-action-distance/

  • Bernoulli, J. (1713). Ars Conjectandi, Opus Posthumum. Accedit Tractatus de Seriebus Infinitis, et Epistola Gallice Scripta de Ludo Pilae Reticularis. Thurneysen.

    Google Scholar 

  • Black, M. (1952). The identity of indiscernibles. Mind, LXI, 153–164.

    Article  Google Scholar 

  • Bohm, A., & Gadella, M. (1989). Dirac Kets, Gamow Vectors and Gel’fand Triplets. In The rigged Hilbert space formulation of quantum mechanics (Springer lecture notes in physics) (Vol. 348). Springer.

    Google Scholar 

  • Bub, J., & Clifton, R. (1996). A uniqueness theorem for interpretations of quantum mechanics. Studies in History and Philosophy of Modern Physics, 27, 181–219.

    Article  Google Scholar 

  • Calosi, C., & Mariani, C. (2021). Quantum indeterminacy. Philosophy Compass., 2021, 1–15.

    Google Scholar 

  • Calosi, C., & Wilson, J. (2019). Quantum metaphysical indeterminacy. Philosophical Studies, 176, 2599–2627.

    Article  Google Scholar 

  • Campbell, K. (1990). Abstract Particulars. Basil Blackwell.

    Google Scholar 

  • da Costa, N., & Krause, D. (1999). Set-theoretical models for quantum systems. In M. L. Dalla Chiara, R. Giuntini, & F. Laudisa (Eds.), Language, Quantum, Music (pp. 171–181). Kluwer.

    Chapter  Google Scholar 

  • da Costa, N., & Lombardi, O. (2014). Quantum mechanics: Ontology without individuals. Foundations of Physics, 44, 1246–1257.

    Article  Google Scholar 

  • da Costa, N., Lombardi, O., & Lastiri, M. (2013). A modal ontology of properties for quantum mechanics. Synthese, 190, 3671–3693.

    Article  Google Scholar 

  • Davidson, D. (1967). Truth and meaning. Synthese, 17, 304–323.

    Article  Google Scholar 

  • Dieks, D. (2005). Quantum mechanics: An intelligible description of objective reality? Foundations of Physics, 35, 399–415.

    Article  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Springer.

    Book  Google Scholar 

  • Earman, J. (2015). Some puzzles and unresolved issues about quantum entanglement. Erkenntnis, 80, 303–337.

    Article  Google Scholar 

  • Esfeld, M. (2019). Individuality and the account of nonlocality: The case for the particle ontology in quantum physics. In O. Lombardi, S. Fortin, C. López, & F. Holik (Eds.), Quantum worlds: Perspectives on the ontology of quantum mechanics (pp. 222–244). Cambridge University Press.

    Chapter  Google Scholar 

  • Fortin, S., & Lombardi, O. (2022). Entanglement and indistinguishability in a quantum ontology of properties. Studies in History and Philosophy of Science, 91, 234–243.

    Article  Google Scholar 

  • Fortin, S., Lombardi, O., & Martínez González, J. C. (2018). A new application of the modal-Hamiltonian interpretation of quantum mechanics: The problem of optical isomerism. Studies in History and Philosophy of Modern Physics, 62, 123–135.

    Article  Google Scholar 

  • French, S. (1989). Identity and individuality in classical and quantum physics. Australasian Journal of Philosophy, 67, 432–446.

    Article  Google Scholar 

  • French, S. (2019). Identity and individuality in quantum theory. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2019 Edition). https://plato.stanford.edu/archives/win2019/entries/qt-idind/

  • French, S., & Krause, D. (2006). Identity in physics a historical, philosophical, and formal analysis. Clarendon Press.

    Book  Google Scholar 

  • Friebe, C. (2014). Individuality, distinguishability, and (non-)entanglement: A defense of Leibniz’s principle. Studies in History and Philosophy of Modern Physics, 48, 89–98.

    Article  Google Scholar 

  • Gallois, A. (2016). Identity over time. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/identity-time/

  • Gelfand, I., & Naimark, M. (1943). On the imbedding of normed rings into the ring of operators in Hilbert space. Matematicheskii Sbornik, 54, 197–217.

    Google Scholar 

  • Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.

    Article  Google Scholar 

  • Ghirardi, G. C., Grassi, R., & Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program. Foundations of Physics, 25, 5–38.

    Article  Google Scholar 

  • Haack, S. (1974). Deviant logic. Cambridge University Press.

    Google Scholar 

  • Haack, S. (1978). Philosophy of logics. Cambridge University Press.

    Book  Google Scholar 

  • Harshman, N. L. (2012). Observables and entanglement in the two-body system. AIP Conference Proceedings, 1508, 386–390.

    Article  Google Scholar 

  • Harshman, N. L., & Ranade, K. S. (2011). Observables can be tailored to change the entanglement of any pure state. Physical Review A, 84, 012303.

    Article  Google Scholar 

  • Healey, R. & Gomes, H. (2022). Holism and nonseparability in physics. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/physics-holism/

  • Holik, F., Jorge, J. P., Krause, D., & Lombardi, O. (2022). Quasi-set theory for a quantum ontology of properties. Synthese, 200, #401.

    Article  Google Scholar 

  • Iguri, S., & Castagnino, M. (1999). The formulation of quantum mechanics in terms of nuclear algebras. International Journal of Theoretical Physics, 38, 143–164.

    Article  Google Scholar 

  • Jauch, J. M., & Piron, C. (1969). On the structure of quantal propositional systems. Helvetica Physica Acta, 42, 842–848.

    Google Scholar 

  • Kant, I. (1902–). Gesammelte Schriften. Berlin: Herausgegeben von der Preußischen Akademie der Wissenschaften (Bde. 1–22), der Deutschen Akademie der Wissenschaften zu Berlin (Bd. 23), und der Akademie der Wissenschaften zu Göttingen (Bde. 24, 25, 27–29).

    Google Scholar 

  • Kaplan, D. (1975). How to Russell a Frege-Church. The Journal of Philosophy, 72, 716–729.

    Article  Google Scholar 

  • Keinänen, M., & Hakkarinen, J. (2014). The problem of trope individuation: A reply to Lowe. Erkenntnis, 79, 65–79.

    Article  Google Scholar 

  • Kochen, S., & Specker, E. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Krause, D. (1992). On a quasi-set theory. Notre Dame Journal of Formal Logic, 33, 402–411.

    Article  Google Scholar 

  • Kuhlmann, M. (2010). The ultimate constituents of the material world – In search of an ontology for fundamental physics. Ontos-Verlag.

    Book  Google Scholar 

  • Laycock, H. (2010). Object. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall 2010 Edition). http://plato.stanford.edu/archives/fall2010/entries/object/

  • Lewowicz, L. (2005). Del Relativismo Lingüístico al Relativismo Ontológico en el Último Kuhn. Departamento de Publicaciones de la Facultad de Humanidades y Ciencias de la Educación, Universidad de la República.

    Google Scholar 

  • Lewowicz, L., & Lombardi, O. (2013). Stuff versus individuals. Foundations of Chemistry, 15, 65–77.

    Article  Google Scholar 

  • Lombardi, O., & Ardenghi, J. S. (2022). How different interpretations of quantum mechanics can enrich each other: The case of the relational quantum mechanics and the modal-Hamiltonian interpretation. Foundations of Physics, 52, #64.

    Article  Google Scholar 

  • Lombardi, O., & Castagnino, M. (2008). A modal-Hamiltonian interpretation of quantum mechanics. Studies in History and Philosophy of Modern Physics, 39, 380–443.

    Article  Google Scholar 

  • Lombardi, O., & Dieks, D. (2016). Particles in a quantum ontology of properties. In T. Bigaj & C. Wüthrich (Eds.), Metaphysics in contemporary physics (pp. 123–143). Brill-Rodopi.

    Chapter  Google Scholar 

  • Lombardi, O., Castagnino, M., & Ardenghi, J. S. (2010). The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Studies in History and Philosophy of Modern Physics, 41, 93–103.

    Article  Google Scholar 

  • Lombardi, O., Fortin, S., & Pasqualini, M. (2022). Possibility and time in quantum mechanics. Entropy, 24, #249.

    Article  Google Scholar 

  • Loux, M. (1998). Metaphysics. A contemporary introduction. Routledge.

    Google Scholar 

  • MacLeod, M. & Rubenstein, E. (2006). Universals. In J. Fieser & B. Dowden (eds.), The internet encyclopedia of philosophy. https://iep.utm.edu/universa/

  • Maurin, A.-S. (2018). Tropes. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2018 Edition). https://plato.stanford.edu/archives/sum2018/entries/tropes/

  • McKay, T. (2008). Critical notice of words without objects. Canadian Journal of Philosophy, 38, 301–323.

    Article  Google Scholar 

  • Menzel, C. (2022). The possibilism-actualism debate. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/possibilism-actualism/

  • Messiah, A. M. L., & Greenberg, O. W. (1964). Symmetrization postulate and its experimental foundation. Physical Review B, 136, 248–267.

    Article  Google Scholar 

  • Muller, F. A. & Saunders, S. (2008). Discerning fermions. The British Journal for the Philosophy of Science, 59, 499–548.

    Article  Google Scholar 

  • Noonan, H. & Curtis, B. (2022). Identity. In E. N. Zalta & U. Nodelman (Eds.), Stanford encyclopedia of philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/identity/

  • O’Leary-Hawthorne, J. (1995). The bundle theory of substance and the identity of indiscernibles. Analysis, 55, 191–196.

    Article  Google Scholar 

  • Orilia, F. & Paolini Paoletti, M. (2022). Properties. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/properties/

  • Pelletier, F. J. (Ed.). (1979). Mass terms: Some philosophical problems. Reidel Publishing Company.

    Google Scholar 

  • Piron, C. (1976). Foundations of quantum physics. W. A. Benjamin.

    Google Scholar 

  • Post, H. (1963). Individuality and physics. The Listener, 70, 534–537.

    Google Scholar 

  • Quine, W. V. O. (1960). Word and object. MIT Press.

    Google Scholar 

  • Quine, W. V. O. (1976). Whither physical objects? In R. S. Cohen, P. Feyerabend, & M. Wartofsky (Eds.), Essays in memory of Imre Lakatos (pp. 497–504). Reidel.

    Chapter  Google Scholar 

  • Quine, W. V. O. (1990). The pursuit of truth. Harvard University Press.

    Google Scholar 

  • Rettler, B. & Bailey, A. M. (2022). Object. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/object/

  • Russell, B. (1914). Our knowledge of the external world. Allen and Unwin.

    Google Scholar 

  • Russell, B. (1940). An inquiry into meaning and truth. Allen and Unwin.

    Google Scholar 

  • Saunders, S. (2003). Physics and Leibniz’s principles. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections (pp. 289–307). Cambridge University Press.

    Chapter  Google Scholar 

  • Schaffer, J. (2001). The individuation of tropes. Australasian Journal of Philosophy, 79, 247–259.

    Article  Google Scholar 

  • Segal, I. E. (1947). Irreducible representations of operator algebras. Bulletin of the American Mathematical Society, 53, 73–88.

    Article  Google Scholar 

  • Tarski, A. (1941). On the calculus of relations. The Journal of Symbolic Logic, 6, 73–89.

    Article  Google Scholar 

  • Tegtmeier, E. (2000). Events as facts. In J. Faye, U. Scheffler, & M. Urchs (Eds.), Things, facts, and events (pp. 219–228). Rodopi.

    Chapter  Google Scholar 

  • Teller, P. (1998). Quantum mechanics and haecceities. In E. Castellani (Ed.), Interpreting bodies: Classical and quantum objects in modern physics (pp. 114–141). Princeton University Press.

    Google Scholar 

  • Terra Cunha, M. O., Dunningham, J. A., & Vedral, V. (2007). Entanglement in single-particle systems. Proceedings of the Royal Society A, 463, 2277–2286.

    Article  Google Scholar 

  • Thomason, S. K. (1989). Free construction of time from events. Journal of Philosophical Logic, 18, 43–67.

    Article  Google Scholar 

  • Tugendhat, E. (1982). Traditional and analytical philosophy: Lectures on the philosophy of language. Cambridge University Press.

    Google Scholar 

  • Tumulka, R. (2006). A relativistic version of the Ghirardi-Rimini-Weber model. Journal of Statistical Physics, 125, 821–840.

    Article  Google Scholar 

  • van Fraassen, B. C. (1985). Statistical behaviour of indistinguishable particles: Problems of interpretation. In P. Mittelstaedt & E.-W. Stachow (Eds.), Recent developments in quantum logic (pp. 161–187). Cologne.

    Google Scholar 

  • Whitehead, A. N. (1929). Process and reality. An essay in cosmology. Macmillan.

    Google Scholar 

  • Wigner, E. P. (1939). On unitary representations of the inhomogeneous Lorentz group. Annals of Mathemathics, 40, 149–204.

    Article  Google Scholar 

  • Wilson, N. L. (1974). Facts, events, and their identity conditions. Philosophical Studies, 25, 303–321.

    Article  Google Scholar 

  • Wilson, J. (2022). Determinables and determinates. In E. N. Zalta & U. Nodelman (Eds.), The Stanford encyclopedia of philosophy, (Winter 2022 Edition). https://plato.stanford.edu/archives/win2022/entries/determinate-determinables/

  • Wittgenstein, L. (1921). Logisch-Philosophische Abhandlung, Annalen der Naturphilosophische, XIV(3/4). English translation: C. K. Ogden (1922). Tractatus Logico-Philosophicus. Routledge & Kegan Paul.

    Google Scholar 

  • Wolff, Ch. (1728). Philosophia Rationalis Sive Logica. Reprint of the 1740 edition with introduction, notes and index in (1980) by Jean École (Ed.). Georg Olms.

    Google Scholar 

  • Zanardi, P. (2001). Virtual quantum systems. Physical Review Letters, 87, #077901.

    Article  Google Scholar 

  • Zanardi, P., Lidar, D. A., & Lloyd, S. (2004). Quantum tensor product structures are observable induced. Physical Review Letters, 92, #06042.

    Article  Google Scholar 

  • Zurek, W. H. (1982). Environment-induced superselection rules. Physical Review D, 26, 1862–1880.

    Article  Google Scholar 

  • Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(715), 776.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grant PICT-04519 of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardi, O. (2023). Not Individuals, Nor Even Objects: On the Ontological Nature of Quantum Systems. In: Arenhart, J.R.B., Arroyo, R.W. (eds) Non-Reflexive Logics, Non-Individuals, and the Philosophy of Quantum Mechanics. Synthese Library, vol 476. Springer, Cham. https://doi.org/10.1007/978-3-031-31840-5_4

Download citation

Publish with us

Policies and ethics