Skip to main content
Log in

On the Epistemic Foundation for Iterated Weak Dominance: An Analysis in a Logic of Individual and Collective attitudes

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper proposes a logical framework for representing static and dynamic properties of different kinds of individual and collective attitudes. A complete axiomatization as well as a decidability result for the logic are given. The logic is applied to game theory by providing a formal analysis of the epistemic conditions of iterated deletion of weakly dominated strategies (IDWDS), or iterated weak dominance for short. The main difference between the analysis of the epistemic conditions of iterated weak dominance given in this paper and other analysis is that we use a semi-qualitative approach to uncertainty based on the notion of plausibility first introduced by Spohn, whereas other analysis are based on a quantitative representation of uncertainty in terms of probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is the typical condition of iterated deletion of strongly dominated strategies (also called iterated strong dominance).

  2. This condition is required in order to ensure that the agents will converge to a Nash equilibrium.

  3. See [56] for an interesting analysis of iterated strong dominance after relaxing the assumption of logical omniscience.

  4. Related concepts are the concept of ‘assumption’ [23], ‘strong belief’ [12] and ‘full belief’ [2]. See [3] for a comparative analysis of these four concepts.

  5. It has to be noted that Spohn’s notion of plausibility is measured on the set of ordinals. Here, for simplicity, it is assumed that plausibility is measured on the integer scale Num.

  6. As for the ¬φ-part, due to the fact that Num is finite, we can only say that: if v and u are worlds in which φ is false, agent i considers v more plausible than u and, according to agent i, u has a degree of exceptionality equal or lower than \(\mathsf {max} - \alpha \) then, after revising his beliefs with φ, agent i will still consider v more plausible than u. More formally, for all \(v ,u \in || \neg \varphi ||\) we have that if \(\kappa (u,i) > \kappa (v,i)\) and \((u,v) \in \mathcal {E}_{i} \) and \(\kappa (u,i) \leq \mathsf {max} - \alpha \) then \(\kappa ^{*_{i}^{\alpha } \varphi } (u,i) > \kappa ^{*_{i}^{\alpha } \varphi } (v,i)\).

  7. Note that the three conditions 1, 2(a) and 2(b) cover all cases. Indeed, the third condition \([{i}]\neg \varphi \)is equivalent to \(\neg \varphi \wedge [{i}]\neg \varphi \), because \( [{i}]\neg \varphi \rightarrow \neg \varphi \)is valid.

  8. A modal logic analysis of this concept has been given by Aucher [5] (see also [35, 54]). A relevant difference between Aucher’s approach and our approach is that he introduces graded belief operators in the syntax right away, whereas we build them from the special atomic formulae \(\mathsf {exc}_{i {,}\mathsf {h}}\). However, the added value of working with the \(\mathsf {exc}_{i{,}\mathsf {h}}\)-constructs is that they provide a simple extension of van Benthem et al.’s logic presented in [53]. This simple extension allows us to formalize a variety of individual and collective epistemic attitudes that have been studied in the literature (see Section 4) and that are not expressible in Aucher’s logic. (For instance, Aucher’s logic does not incorporate the concepts of common belief and common knowledge).

  9. The only difference with AGM theory is the condition \( \langle {i } \rangle \varphi \). AGM assumes that the new information φ must incorporated in the belief base, whereas we here assume that φ must incorporated in the belief base only if agent i envisages a world in which φ is true.

  10. Note that the relation \(\mathit {SB}_{i}\) matches exactly to the plausibility relation in the pure qualitative accounts on belief revision in Dynamic Epistemic Logic (DEL) [9, 51].

  11. The only exception is Baltag et al. [11] who study a notion of “common stable true belief” which similar to our notion of “common safe belief”.

  12. Note that this constraint ensures that every function \(\mathcal {A}_{i}\) is an onto function.

  13. Remember from Section 4.1 that the graded belief operator \(\mathsf {Bel}_{i}^{\geq \mathsf {h}}\) can be interpreted by means of the binary relation \(\mathcal {B}_{i}^{<\mathsf {h}}=\{(w,v):(w,v)\in \mathcal {E}_{i}\;\text {and}\;\kappa (v,i) <\mathsf {h}\}\). Thus, strategy a i is an admissible choice according to agent i’s graded beliefs with strenght at least h if and only if, strategy a i is a strongly rational choice with respect to agent i’s set of envisaged worlds with exceptionality at most \(\mathsf {h}-1\).

  14. Börgers’ characterization uses the concept of approximate common knowledge by Monderer & Samet [39] instead of common belief. (Roughly speaking φ is approximate common knowledge if and only if, everybody assigns high probability to φ, everybody assigns high probability to the fact that everybody assigns high probability to φ, and so on).

  15. This validity can be proved by using Proposition 2 given in the technical annex at the end of the paper (Section A.3).

  16. It is worth noting that the completeness assumption together with the fact that there is common belief that every player is perfectly rational and has a robust belief à la Baltag & Smets [10] (see Section 4.1) about the perfect rationality of the other players are also sufficient conditions for two iterations of DWDS followed by IDSDS. Indeed, in a way similar to the proof of Theorem 5, one can prove the following validity for all \(s\not \in S^{DWDS^{2}-IDSDS}\):

    $$\models\left(\mathsf{ComplAss}\wedge\mathsf{CBel}_{Agt}\left(\mathsf{AllPRat}_{Agt}\wedge \bigwedge_{i\in Agt}\mathsf{RBel}^{B\&S}_{i}\mathsf{AllPRat}_{-i}\right)\right)\rightarrow \neg pl(s) $$

    with

    $$\mathsf{ComplAss}\stackrel{\mathtt{def}}{=}\bigwedge_{i \in Agt}\bigwedge_{s_{-i}\in S_{-i}:s_{-i}\in S_{-i,1}^{DWDS^{2}-IDSDS}} \langle {i}\rangle(pl_{-i}(s_{-i})\wedge \mathsf{AllPRat}_{-i}). $$
  17. Baltag et al.’s analysis too is largely inspired by Stalnaker [48].

  18. Note that, when \(\mathsf {max} = 1\), the notion of perfectly rationality as defined in Section 6.4 and, consequently, our analysis of the sufficient condition for iterated weak dominance only require the operators of knowledge i and belief Bel i . However, this does not mean that the graded belief operator \(\mathsf {Bel}_{i}^{\mathsf {h}}\) is useless in general. It only means that it becomes unnecessary in the binary case, i.e., when it is assumed that agents rank possible worlds according to a two-value scale \(Num = \{0,1\}\) for degrees of belief.

  19. Indeed, \(\mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\) implies \(\bigwedge _{i\in Agt}\mathsf {Bel}_{i}\mathsf {PRat}_{i}\) which in turn implies \(\bigwedge _{i\in Agt}\langle {i}\rangle \mathsf {PRat}_{i}\). The latter implies \(\bigwedge _{i\in Agt} \mathsf {PRat}_{i}\) (by the validity (10f) in Proposition 17).

  20. Indeed, \(\mathsf {CBel}_{Agt}(\mathsf {AllPRat}_{Agt}\wedge \mathsf {AllRBelPRat}_{Agt})\) implies that \(\bigwedge _{i\in Agt}\mathsf {Bel}_{i}(\mathsf {PRat}_{i}\wedge \bigwedge _{\chi _{-i}\in Beh_{-i}: Comp(\chi _{-i},\mathsf {AllPRat}_{-i})} \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}}))\). The latter implies that \(\bigwedge _{i \in Agt} \mathsf {PRat}_{i}\) (by the validity (10f) in Proposition 17). Moreover, it implies that \(\bigwedge _{i \in Agt}\bigwedge _{\chi _{-i}\in Beh_{-i}: Comp(\chi _{-i},\mathsf {AllPRat}_{-i})} \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}})\). To see this, just note that for any PDL-A model \(M = \langle W, \mathcal {E},\kappa , {\mathit {V}} \rangle \), worlds w, v in M and \(\alpha \in Num\setminus \{0\}\) we have that if \(v \in \mathit {B}_{i}(w)\) then \(\mathit {B}_{i}^{*_{i}^{\alpha }\varphi }(w) = \mathit {B}_{i}^{*_{i}^{\alpha }\varphi }(v)\). Hence, we have \(\models \mathsf {Bel}_{i}\left [*_{i}^{\alpha }\varphi \right ] \mathsf {Bel}_{i}\psi \rightarrow [*_{i}^{\alpha } \varphi ]\mathsf {Bel}_{i}\psi \). By the preceding validity and the validity \(\models \mathsf {Bel}_{i}\mathsf {Bel}_{i}\varphi \rightarrow \mathsf {Bel}_{i}\varphi \), we have \(\models \mathsf {Bel}_{i}\mathsf {RBel}_{i}({\varphi },{\psi })\rightarrow \mathsf {RBel}_{i}({\varphi },{\psi })\). Finally, \(\bigwedge _{i \in Agt}(\mathsf {PRat}_{i}\wedge \bigwedge _{\chi _{-i}\in Beh_{-i}: Comp(\chi _{-i}, \mathsf {AllPRat}_{-i})} \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}}))\) is equivalent to \(\mathsf {AllPRat}_{Agt}\wedge \mathsf {AllRBelPRat}_{Agt}\).

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D. (1985). On the logic of theory change: partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510–530.

    Article  Google Scholar 

  2. Asheim, G., & Dufwenberg, M. (2003). Admissibility and common belief. Games and Economic Behavior, 42, 208–234.

    Article  Google Scholar 

  3. Asheim, G., & Søvik, Y. (2005). Preference-based belief operators. Mathematical Social Sciences, 50, 61–82.

    Article  Google Scholar 

  4. Asheim, G.B. (2001). Proper rationalizability in lexicographic beliefs. International Journal of Game Theory, 30, 453–478.

    Article  Google Scholar 

  5. Aucher, G. (2005). A combined system for upyear logic and belief revision. In Proceedings of PRIMA 2004 of LNAI (Vol. 3371, pp. 1–18). Springer-Verlag.

  6. Aumann, R. (1999). Interactive epistemology, I. knowledge. International Journal of Game Theory, 28(3), 263–300.

    Article  Google Scholar 

  7. Baltag, A., Moss, L., Solecki, S. (1998). The logic of public announcements, common knowledge and private suspicions. In Proceedings of TARK’98 (pp. 43–56). Morgan Kaufmann.

  8. Baltag, A., & Moss, L.S. (2004). Logics for epistemic programs. Synthese, 139(2), 165–224.

    Article  Google Scholar 

  9. Baltag, A., & Smets, S. (2008). A qualitative theory of dynamic interactive belief revision. In Proceedings of LOFT 7, texts in logic and games (Vol. 3, pp. 13–60). Amsterdam University Press.

  10. Baltag, A., & Smets, S. (2009). Talking your way into agreement: belief merge by persuasive communication. In Proceedings of the second multi-agent logics, languages, and organisations federated workshops (MALLOW), CEUR workshop proceedings (Vol. 494). CEUR-WS.org.

  11. Baltag, A., Smets, S., Zvesper, J.A. (2009). Keep ‘hoping’ for rationality: a solution to the backward induction paradox. Synthese, 169(2), 301–333.

    Article  Google Scholar 

  12. Battigalli, P., & Siniscalchi, M. (2002). Strong belief and forward induction reasoning. Journal of Economic Theory, 106(2), 356–391.

    Article  Google Scholar 

  13. Bernheim, D. (1986). Axiomatic characterizations of rational choice in strategic environments. Scandinavian Journal of Economics, 88, 473–488.

    Article  Google Scholar 

  14. Blume, L.E., Brandenburger, A., Dekel, E. (1991). Lexicographic probabilities and choice under uncertainty. Econometrica, 59, 61–79.

    Article  Google Scholar 

  15. Board, O. (1998). Belief revision and rationalizability. In Proceedings of TARK’98 (pp. 201–213). Morgan Kaufmann.

  16. Board, O. (2002). Knowledge, beliefs, and game-theoretic solution concepts. Oxford Review of Economic Policy, 18, 418–432.

    Article  Google Scholar 

  17. Bonanno, G. (2008). A syntactic approach to rationality in games with ordinal payoffs. In Proceedings of LOFT 2008, texts in logic and games series (pp. 59–86). Amsterdam University Press.

  18. Börgers, T. (1994). Weak dominance and approximate common knowledge. Journal of Economic Theory, 64, 265–276.

    Article  Google Scholar 

  19. Börgers, T., & Samuelson, L. (1992). Cautious utility maximization and iterated weak dominance. International Journal of Game Theory, 21, 13–25.

    Article  Google Scholar 

  20. Brandeburger, A. (2007). The power of paradox: some recent developments in interactive epistemology. International Journal of Game Theory, 35(4), 465–492.

    Article  Google Scholar 

  21. Brandeburger, A., & Dekel, E. (1987). Rationalizability and correlated equilibria. Econometrica, 55, 1391–1402.

    Article  Google Scholar 

  22. Brandenburger, A. (1992). Lexicographic probabilities and iterated admissibility. In P. Dasgupta, D. Gale, O. Hart, E. Maskin (Eds.), Economic analysis of markets and games (pp. 282–290). MIT Press.

  23. Brandenburger, A., Friedenberg, A., Keisler, J. (2008). Admissibility in games. Econometrica, 76, 307–352.

    Google Scholar 

  24. Dekel, E., & Fudenberg, D. (1990). Rational behavior with payoff uncertainty. Journal of Economic Theory, 52, 243–267.

    Article  Google Scholar 

  25. Dubois, D., & Prade, H. (1998). Possibility theory: qualitative and quantitative aspects. In D. Gabbay & P. Smets (Eds.), Handbook of defeasible reasoning and uncertainty management systems (Vol. 1, pp. 169–226). Kluwer.

  26. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M. (1995). Reasoning about knowledge. Cambridge: MIT Press.

    Google Scholar 

  27. Gärdenfors, P., & Makinson, D. (1988). Revisions of knowledge systems using epistemic entrenchment. In M.Y. Vardi, (Ed.), Proceedings of TARK 1988 (pp. 83–95). Morgan Kaufmann.

  28. Goldszmidt, M., & Pearl, J. (1996). Qualitative probability for default reasoning, belief revision and causal modeling. Artificial Intelligence, 84, 52–112.

    Article  Google Scholar 

  29. Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17, 157–170.

    Article  Google Scholar 

  30. Halpern, J.Y. (2011). Beyond nash equilibrium: solution concepts for the 21st century. In K.R. Apt & E. Gradel (Eds.), Lectures in game theory for computer scientists (pp. 264–1278).

  31. Halpern, J.Y., & Lakemeyer, G. (2001). Multi-agent only knowing. Journal of Logic and Computation, 11(1), 41–70.

    Article  Google Scholar 

  32. Halpern, J.Y., & Pass, R. (2009). A logical characterization of iterated admissibility. In A. Heifetz (Ed.), Proceedings of TARK 2009 (pp. 146–155).

  33. Harel, D., Kozen, D., Tiuryn, J. (2000). Dynamic logic: MIT Press.

  34. Klein, P.D. (1971). A proposed definition of propositional knowledge. Journal of Philosophy, 68, 471–482.

    Article  Google Scholar 

  35. Laverny, N., & Lang, J. (2005). From knowledge-based programs to graded belief-based programs, part II: off-line reasoning. In Proceedings of IJCAI’05 (pp. 497–502).

  36. Lehrer, K., & Paxton, T. (1969). Undefeated justified true belief. Journal of Philosophy, 66, 225–237.

    Article  Google Scholar 

  37. Lorini, E., & Schwarzentruber, F. (2010). A modal logic of epistemic games. Games, 1(4), 478–526.

    Article  Google Scholar 

  38. Mas-Colell, M., Winston, A., Green J. (1995). Microeconomic theory. New York: Oxford University Press.

    Google Scholar 

  39. Monderer, D., & Samet, D. (1989). Approximating common knowledge with common beliefs. Games and Economic Behavior, 1, 170–190.

    Article  Google Scholar 

  40. Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection. Econometrica, 52, 1029–1050.

    Article  Google Scholar 

  41. Pearl, J. (1993). From conditional oughts to qualitative decision theory. In D. Heckerman & E.H. Mamdani (Eds.), Proceedings of UAI’93 (pp. 12–22). Morgan Kaufmann.

  42. Perea, A. (2012). Epistemic game theory: reasoning and choice. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  43. Rott, H. (2004). Stability, strength and sensitivity: converting belief into knowledge. Erkenntnis, 61, 469–493.

    Article  Google Scholar 

  44. Samuelson, L. (1992). Dominated strategies and common knowledge. Games and Economic Behavior, 4, 284–313.

    Article  Google Scholar 

  45. Spohn W (1988). Ordinal conditional functions: a dynamic theory of epistemic states. In W.L. Harper & B. Skyrms (Eds.), Causation in decision, belief change and statistics (pp. 105–134). Kluwer.

  46. Stalnaker, R. (1994). On the evaluation of solution concepts. Theory and Decision, 37, 49–73.

    Article  Google Scholar 

  47. Stalnaker, R. (1996). Knowledge, belief and counterfactual reasoning in games. Economics and Philosophy, 12, 133–163.

    Article  Google Scholar 

  48. Stalnaker, R. (1998). Belief revision in games: forward and backward induction. Mathematical Social Sciences, 36, 31–56.

    Article  Google Scholar 

  49. Stalnaker, R. (2006). On logics of knowledge and belief. Philosophical Studies, 128, 169–199.

    Article  Google Scholar 

  50. Tan, T., & Werlang, S. (1988). The bayesian foundation of solution concepts of games. Journal of Economic Theory, 45, 370–391.

    Article  Google Scholar 

  51. van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied Non-Classical Logics, 17, 129–155.

    Article  Google Scholar 

  52. van Benthem, J. (2007). Rational dynamics and epistemic logic in games. International Game Theory Review, 9(1), 13–45.

    Article  Google Scholar 

  53. van Benthem, J., van Eijck, J., Kooi, B. (2006). Logics of communication and change. Information and Computation, 204(11), 1620–1662.

    Article  Google Scholar 

  54. van Ditmarsch, H. (2005). Prolegomena to dynamic logic for belief revision. Synthese, 147(2), 229–275.

    Article  Google Scholar 

  55. Weydert, E. (1994). General belief measures. In R.L. de Mántaras & D. Poole (Eds.), Proceedings of UAI’94 (pp. 575–582). Morgan Kaufmann.

  56. Zvesper, J.A. (2010). Playing with information PhD thesis, The Netherlands: University of Amsterdam.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiliano Lorini.

Appendix: Some Proofs

Appendix: Some Proofs

1.1 A.1 Proof of Theorem 1

Satisfiability in PDL-A is decidable.

Proof

First of all note that the logic PDL-A −− is nothing but the variant of PDL where each atomic knowledge program i is interpreted by an equivalence relation ℰ i . This logic can be embedded into PDL extended with converse, by simulating every atomic knowledge programs i with a composite program \( (a \cup a^{-1})^{\ast }\), where a is an arbitrary atomic program interpreted by a binary relation \(\mathcal {R}_{a}\) (not necessarily an equivalence relation!) and \(a^{-1} \) is the converse of a. PDL with converse is decidable [33]. It follows that PDL-A −− is decidable too.

Moreover, note that the problem of satisfiability in PDL-A is reducible to the problem of global logical consequence in PDL-A −−, where the special atoms \(\mathsf {exc}_{i,\mathsf {h}}\) are just elements of the set of propositional variables Prop and the set of global axioms Γ is the set of all formulas of Proposition 13. That is, we have \(\models _{\textsf {PDL-A}^{-}}\varphi \) if and only if \(\Gamma \models _{\textsf {PDL-A}^{--}}\varphi \). Observe that Γ is finite (because Num is finite). It is a routine task to verify that the problem of global logical consequence in PDL-A −− with a finite number of global axioms is reducible to the problem of satisfiability in PDL-A −−. In particular, if \(\Gamma = \{\chi _{1}, \ldots , \chi _{n} \}\), we have \(\Gamma \models _{\textsf {PDL-A}^{--}}\varphi \) if and only if \(\models _{\textsf {PDL-A}^{--}} \mathsf {CK}_{Agt} (\chi _{1} \wedge \ldots \wedge \chi _n) \rightarrow \varphi \), where \(\mathsf {CK}_{Agt}\) is the common knowledge operator defined in Section 4.2. As the problem of satisfiability checking in PDL-A −− is decidable, it follows that the problem of satisfiability checking in the logic PDL-A is decidable too.

Proposition 15 ensures that red provides an effective procedure for reducing a PDL-A formula φ into an equivalent PDL-A formula \(red(\varphi )\). As PDL-A is decidable, PDL-A is decidable too. □

1.2 A.2 Proof of Theorem 4

Let \(s\not \in S^{DWDS^{1}-IDSDS}\). Then:

$$\models \mathsf{CBel}_{Agt} \mathsf{AllPRat}_{Agt}\rightarrow \neg pl(s) $$

Proof

The proof is by induction.

Base case  For all \(s\not \in S_{1}^{DWDS^{1}-IDSDS}\) we prove that:

(A1) \(\models \mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\rightarrow \neg pl(s)\)

To prove (A1), it is sufficient to prove the following validity (B1), as \(\mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\rightarrow \mathsf {AllPRat}_{Agt}\) is valid by the item (10f) in Proposition 17.Footnote 19 For all \(s\not \in S_{1}^{DWDS^{1}-IDSDS}\) we have that:

(B1) \(\models \mathsf {AllPRat}_{Agt}\rightarrow \neg pl(s)\)

And to prove (B1), it is sufficient to prove that if \(s[i]\not \in S_{i, 1}^{DWDS^{1}-IDSDS}\) then:

(C1) \(\models \mathsf {PRat}_{i}\rightarrow \neg pl_{i}(s[i])\)

Let us prove (C1) by reductio ad absurdum. We assume that \(s[i] \not \in S_{i, 1}^{DWDS^{1}-IDSDS}\) and \(M,w \models \mathsf {PRat}_{i}\) and \(M,w \models pl_{i} (s[i])\)for some arbitrary model M and world w in M. We are going to show that these three facts are inconsistent. \(s[i]\not \in S_{i,1}^{DWDS^{1}-IDSDS}\) implies that:

(D1) there is \(b_{i}\in S_{i}\) such that: (1) for all \(s_{-i}^{\prime }\in S_{-i}\) we have \(\langle s[i],s_{-i}^{\prime }\rangle \leq _{i} \langle b_{i}, s_{-i}^{\prime }\rangle \) and (2) there is \(s_{-i}^{\prime \prime }\in S_{-i}\) such that \(\langle s[i],s_{-i}^{\prime \prime }\rangle <_{i} \langle b_{i},s_{-i}^{\prime \prime } \rangle \).

\(M,w \models \mathsf {PRat}_{i}\) and \(M,w \models pl_{i}(s[i])\) together imply:

(E1) \(M,w \models \mathsf {PRat}_{i}(s[i])\).

By the Constraint (Constr3), (D1) implies that:

(F1) there is \(b_{i} \in S_{i}\) such that: (1) for all \(s_{-i}^{\prime } \in S_{-i}\) we have \(\langle s[i],s_{-i}^{\prime }\rangle \leq _{i}\langle b_{i}, s_{-i}^{\prime }\rangle \) and (2) there are \(s_{-i}^{\prime \prime }\in \mathit {S}_{-i}\) and \(u \in W\) and \(\mathsf {h} \in Num\) such that \((w,u) \in \mathcal {E}_{i}\) and \(\boldsymbol {\mathit {A}}_{-i}(u)=s_{-i}^{\prime \prime }\) and \(\kappa (u,i) = \mathsf {h}\) and \(\langle s[i],s_{-i}^{\prime }\rangle <_{i}\langle b_{i},s_{-i}^{\prime \prime }\rangle \).

(F1) implies that:

(G1) \(M,w \not \models \mathsf {PRat}_{i}(s[i])\).

But (G1) and (E1) are in contradiction.

Inductive case  For m > 1, we assume that if \(s\not \in S_{m}^{DWDS^{1}-IDSDS}\) then:

  • (Inductive Hypothesis) \(\models \mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\rightarrow \neg pl(s)\)

We are going to prove that if \(s\not \in S_{m+1}^{DWDS^{1}-IDSDS}\) then:

(A2) \(\models \mathsf {CBel}_{Agt} \mathsf {AllPRat}_{Agt}\rightarrow \neg pl(s)\)

Let us take an arbitrary model M and world w and assume that \(M,w \models \mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\) and \(M,w \models pl(s)\). We are going to show that \(\mathit {s}_{} \in \mathit {S}_{m+1}^{\mathit {DWDS}^1-\mathit {IDSDS}}\).

From \(M,w \models \mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\), by the validity (10f) in Proposition 17, it follows that:

(B2) \( M,w \models \mathsf {AllPRat}_{Agt}\)

By the validity (9b) in Proposition 16, (B2) implies that:

(C2) \(M,w \models \mathsf {AllSRat}_{Agt}\)

Moreover we have the following validity by the property \(\models \mathsf {CBel}_{Agt} \varphi \rightarrow \mathsf {Bel}_{i} \mathsf {CBel}_{Agt} \varphi \) for every iAgt:

(D2) \(\models \mathsf {CBel}_{Agt} \mathsf {AllPRat}_{Agt}\rightarrow \bigwedge _{i \in Agt} \mathsf {Bel}_{i}\mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\)

Therefore, from \(M,w \models \mathsf {CBel}_{Agt} \mathsf {AllPRat}_{Agt}\) we infer that:

(E2) \(M,w \models \bigwedge _{i \in Agt} \mathsf {Bel}_{i}\mathsf {CBel}_{Agt}\mathsf {AllPRat}_{Agt}\)

By the inductive hypothesis, Axiom K and the rule of necessitation for the belief operator Bel i , from (E2) it follows that if \(s^{\prime }\not \in S_{m}^{DWDS^{1}-IDSDS}\) then:

(F2) \(M,w \models \bigwedge _{i\in Agt}\mathsf {Bel}_{i}\neg pl(s^{\prime })\)

From (F2), (C2) and \(M,w \models pl(s)\) it follows that for every iAgt and for all \(b_{i}\in S_{i}\) either there is \(s^{\prime }\in S_{m}^{DWDS^{1}-IDSDS}\) such that \(\langle b_{i},s_{-i}^{\prime }\rangle <_{i}\langle s[i], s_{-i}^{\prime }\rangle \) or for all \(\mathit {s}^{\prime }\in S_{m}^{DWDS^{1}-IDSDS}\) we have \(\langle b_{i},s_{-i}^{\prime }\rangle \leq _{i}\langle s[i], s_{-i}^{\prime } \rangle \). The latter implies that for every iAgt we have \(s[i] \in S_{i, m+1}^{DWDS^{1}-IDSDS}\) which is equivalent to \(s\in S_{m+1}^{DWDS^{1}-IDSDS}\). □

1.3 A.3 Proof of Theorem 5

Let \(s\not \in S^{DWDS^{2}-IDSDS}\). Then:

$$\models \mathsf{CBel}_{Agt}(\mathsf{AllPRat}_{Agt}\wedge \mathsf{AllRBelPRat}_{Agt}) \rightarrow \neg pl(s) $$

Proof

The proof is by induction. The proof of the inductive case goes exactly as the proof of the inductive case in the proof of Theorem 4.

Here we only prove the base case.

Base case  For all \(s\not \in S_{2}^{DWDS^{2}-IDSDS}\) we prove that:

(A) \(\models \mathsf {CBel}_{Agt}(\mathsf {AllPRat}_{Agt}\wedge \mathsf {AllRBelPRat}_{Agt})\rightarrow \neg pl(s)\)

To prove (A), it is sufficient to prove the following validity (B), as \(\mathsf {CBel}_{Agt}(\mathsf {AllPRat}_{Agt}\wedge \mathsf {AllRBelPRat}_{Agt}) \rightarrow (\mathsf {AllPRat}_{Agt}\wedge \mathsf {AllRBelPRat}_{Agt})\)is valid.Footnote 20

For all \(s\not \in S_{2}^{DWDS^{2}-IDSDS}\) we have that:

(B) \(\models (\mathsf {AllPRat}_{Agt}\wedge \mathsf {AllRBelPRat}_{Agt})\rightarrow \neg pl(s)\)

And to prove (B), it is sufficient to prove that if \(s[i] \not \in S_{i,2}^{DWDS^{2}-IDSDS}\) then:

(C) \( \models (\mathsf {PRat}_{i}\wedge \bigwedge _{\chi _{-i}\in Beh_{-i}:Comp(\chi _{-i},\mathsf {AllPRat}_{-i})}\mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}}))\rightarrow \neg pl_{i}(s[i]) \)

Let us prove (C) by reductio ad absurdum. We assume that \(s[i] \not \in S_{i,2}^{DWDS^{2}-IDSDS}\) and \(M,w \models \mathsf {PRat}_{i}\) and \( M,w \models \bigwedge _{\chi _{-i}\in Beh_{-i}:Comp(\chi _{-i},{\mathsf {AllPRat}_{-i}})}\mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}})\) and \(M,w \models pl_{i}(s[i])\) for some arbitrary PDL-A + model \(M = \langle W, \{\mathcal {E}_{i}: i \in Agt\} , \kappa , \{\mathit {A}_{i} : i \in Agt\} , \mathit {V} \rangle \) and world w in M. We are going to show that these three facts are inconsistent.

The rest of the proof makes use of the following Lemma 1.

Lemma 1

Let \(M = \langle W, \{\mathcal {E}_{i}: i \in Agt\}, \kappa , \{\mathcal {A}_{i}: i \in Agt\}, {\mathit {V}} \rangle \) be a PDL-A + model. If \(M,w \models \bigwedge _{\chi _{-i} \in Beh_{-i}: Comp(\chi _{-i},\mathsf {AllPRat}_{-i})} \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}})\) and \(s_{-i}\in S_{-i, 1}^{DWDS^{2}-IDSDS}\) and \(s_{-i}^{\prime }\not \in S_{-i,1}^{DWDS^{2}-IDSDS}\) then \(\kappa _{w,i} (pl_{-i}(s_{-i}))< \kappa _{w,i} (pl_{-i}(s_{-i}^{\prime }))\). □

Proof

In order to prove Lemma 1, we first prove the following Lemma 2.

Lemma 2

Let \(\chi _{-i} = \bigvee _{s_{-i}\in \mathbf {s}_{-i}}pl_{-i}(s_{-i})\) for some \(\mathbf {s}_{-i}\subseteq S_{-i}\). Then, \(Comp(\chi _{-i},\mathsf {AllPRat}_{-i})\) if and only if there exists \(s_{-i}\in \mathbf {s}_{-i}\) such that \(s_{-i} \in S_{-i, 1}^{DWDS^{2}-IDSDS}\). □

Proof

(\(\Leftarrow \)) We first prove the right-to-left direction of the equivalence, after assuming that the set of strategy profiles is \(S= \{s_{1},\ldots , s_{n}\}\) for some \(n \in \mathbb {N}\). Suppose that \(s_{-i}\in S_{-i,1}^{DWDS^{2}-IDSDS}\) with \(s_{-i}\in \mathbf {s}_{-i}\). We can exhibit the following PDL-A + model \(M^{\ast } = \langle W^{\ast },\{\mathcal {E}_{i}^{\ast } : i \in Agt\}, \kappa ^{\ast }, \{\mathit {A}_{i}^{\ast }: i\in Agt\}, {\mathit {V}}^{\ast } \rangle \) where:

  • \(W^{\ast } = \{w_{1}, \ldots , w_{n} \}\);

  • for all iAgt, \(\mathcal {E}_{i}^{\ast } = \{(w_{h}, w_{h^{\prime }}) : w_{h}, w_{h^{\prime }}\in W^{\ast }\;\text {and}\; s_{h} [i] =s_{h^{\prime }}[i]\}\);

  • for all \(w_{h} \in W^{\ast }\) and for all iAgt, \(\mathcal {A}_{i}^{\ast } (w_h) = s_{h}[i]\);

  • for all iAgt and for all \(w_{h} \in W^{\ast }\), \(\kappa ^{\ast }(w_{h},i)=0\);

  • for all \(w_{h} \in W^{\ast }\), \( {\mathit {V}}^{\ast }(w_h) = Prop\).

It is straightforward to verify that \(M^{\ast }, w^{\ast } \models pl_{-i} (s_{-i})\wedge \mathsf {AllPRat}_{-i}\wedge \) where \(w^{\ast } \) is a world in \(W^{\ast }\) such that \(\mathcal {A}_{-i}^{\ast }(w^{\ast }) = s_{-i}\). Therefore, model \(M^{\ast }\) satisfies \(pl_{-i}(s_{-i}) \wedge \mathsf {AllPRat}_{-i}\). It follows that \(M^{\ast }\) satisfies \(\chi _{-i} \wedge \mathsf {AllPRat}_{-i}\) too.

(⇒) The left-to-right direction of the equivalence can be proved by reductio ad absurdum. We assume that: (1) \(s_{-i}\not \in S_{-i, 1}^{DWDS^{2}-IDSDS}\) for all \(s_{-i}\in \mathbf {s}_{-i}\) and (2) there exists \(s_{-i}^{\prime } \in \mathbf {s}_{-i}\) such that \(M,w \models pl_{-i}(s_{-i}^{\prime })\wedge \mathsf {AllPRat}_{-i}\) for some PDL-A + model M and world w in M. From the assumption (1), it follows that there is \(j \in Agt\setminus \{i\}\) such that \(s_{-i}^{\prime }[j] \not \in S_{j, 1}^{DWDS^{2}-IDSDS}\). From the definition of \(\mathsf {PRat}_{j}\), by the Constraint (Constr3) over PDL-A + models, we can prove that if \(s_{-i}^{\prime }[j] \not \in S_{j, 1}^{DWDS^{2}-IDSDS}\) and \(M,w \models pl_{j}(s_{-i}^{\prime }[j])\)then \(M,w \models \neg \mathsf {PRat}_{j}\). Hence, from the initial assumptions it follows that \(M,w \models \neg \mathsf {PRat}_{j}\). The latter is in contradiction with the assumption (2). □

Now assume that \(s_{-i}\in S_{-i, 1}^{DWDS^{2}-IDSDS}\) and \(s_{-i}^{\prime } \not \in S_{-i, 1}^{DWDS^{2}-IDSDS}\). By Lemma 2, it follows that \(Comp(pl_{-i}(s_{-i})\vee pl_{-i}(s_{-i}^{\prime }),\mathsf {AllPRat}_{-i})\). Moreover, assume that \(M,w \models \bigwedge _{\chi _{-i}\in Beh_{-i}:Comp(\chi _{-i},\mathsf {AllPRat}_{-i})} \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}})\). From the latter assumption it follows that \(M,w \models \mathsf {RBel}_{i}({pl_{-i}(s_{-i})\vee pl_{-i}(s_{-i}^{\prime })}{\mathsf {AllPRat}_{-i}})\). Hence \(M, w \models [*_{i}^{\alpha } pl_{-i} (s_{-i})\vee pl_{-i}(s_{-i}^{\prime })]\mathit {Bel}_{i}\mathit {AIIPRat}_{-i}\) for any \(\alpha \in Num \setminus \{ 0 \}\). By Lemma 2, from the assumption \(s_{-i}^{\prime }\not \in S_{-i, 1}^{DWDS^{2}-IDSDS}\) it follows that \(pl_{-i}(s_{-i}^{\prime })\wedge \neg \mathsf {AllPRat}_{-i}\) is valid. By the Constraint (Constr3) over PDL-A + models and the truth condition of the belief revision operator \([*_{i}^{\alpha } \varphi ]\), it follows that \(M,w \models [*_{i}^{\alpha } pl_{-i}(s_{-i})\vee pl_{-i}(s_{-i}^{\prime })]\mathit {Bel}{i} (pl_{-i}(s_{-i})\wedge \neg pl_{-i}(s_{-i}^{\prime }))\). The latter implies \(\kappa _{w,i} (pl_{-i}(s_{-i})) < \kappa _{w,i } (pl_{-i} (s_{-i}^{\prime }))\). This completes the proof of Lemma 1.

From \(M,w \models \bigwedge _{\chi _{-i} \in Beh_{-i}:Comp(\chi _{-i}, \mathsf {AllPRat}_{-i})} \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}})\), by Lemma 1, it follows that:

(D) if \(\mathit {s}_{-i}^{\prime }\in S_{-i, 1}^{DWDS^{2}-IDSDS}\) and \(s_{-i}^{\prime \prime }\not \in S_{-i, 1}^{DWDS^{2}-IDSDS}\) then \(\kappa _{w,i} (pl_{-i} (s_{-i}^{\prime }))<\kappa _{w,i } (pl_{-i}(s_{-i}^{\prime \prime }))\).

\(s[i]\not \in S_{i,2}^{DWDS^{2}-IDSDS}\) implies that:

(E1) \(s[i] \not \in S_{i,1}^{DWDS^{2}-IDSDS}\) or

(E2) \(s[i]\in S_{i,1}^{DWDS^{2}-IDSDS}\) and \(s[i] \not \in S_{i,2}^{DWDS^{2}-IDSDS}\)

We split the proof in the two subcases: (E1) and (E2).

Proof for the Case (E1)

\(s[i] \not \in S_{i,1}^{DWDS^{2}-IDSDS}\) implies that:

(F1) there is \(b_{i} \in S_{i}^{DWDS^{2}-IDSDS}\) such that: (1) \(b_{i} \neq s[i]\) and (2) \(\langle s[i],s_{-i}^{\prime }\rangle <_{i}\langle b_{i}, s_{-i}^{\prime }\rangle \) for some \(s_{-i}^{\prime } \in S_{-i}^{DWDS^{2}-IDSDS}\) and (3) \(\langle s[i],s_{-i}^{\prime \prime }\rangle \leq _{i}\langle b_{i},s_{-i}^{\prime \prime }\rangle \) for all \(s_{-i}^{\prime \prime }\in S_{-i}^{DWDS^{2}-IDSDS}\).

From (F1) by the Constraint (Constr3) it follows that:

(G1) there are \(b_{i} \in S_{i}^{DWDS^{2}-IDSDS}\) and \(s_{-i}^{\prime }\in S_{-i}^{DWDS^{2}-IDSDS}\) and \(v \in W\) such that: (1) \(\mathit {b}_{i}\neq s[i]\) and (2) \((w,v) \in \mathcal {E}_{i}\) and (3) \(M,v \models pl_{-i}(s_{-i}^{\prime })\) and (4) \(\langle s[i],s_{-i}^{\prime }\rangle <_{i}\langle b_{i},s_{-i}^{\prime }\rangle \) and (5) for all \(u \in W\) such that \((w,u) \in \mathcal {E}_{i}\) and for all \(s_{-i}^{\prime \prime }\in S_{-i}^{DWDS^{2}-IDSDS}\): if \(M, u \models pl_{-i} (s_{-i}^{\prime \prime })\) then \(\langle s[i],s_{-i}^{\prime \prime }\rangle \leq _{i} \langle b_{i},s_{-i}^{\prime \prime }\rangle \).

But (G1) is in contradiction with \(M, w \models \mathsf {PRat}_{i}\) and \(M,w \models pl_{i} (s[i])\).

Proof for the case (E2)

(E2) implies that:

(F2) there is \( b_{i} \in S_{i,1}^{DWDS^{2}-IDSDS}\) such that: (1) \(b_{i} \neq s[i]\) and (2) \(\langle s[i],s_{-i}^{\prime }\rangle <_{i}\langle b_{i},s_{-i}^{\prime }\rangle \) for some \(s_{-i}^{\prime }\in S_{-i,1}^{DWDS^{2}-IDSDS}\) and (3) \(\langle s[i],s_{-i}^{\prime }\rangle \leq _{i} \langle b_{i},s_{-i}^{\prime \prime }\rangle \) for all \(s_{-i}^{\prime \prime }\in S_{-i,1}^{DWDS^{2}-IDSDS}\).

By the Constraint (Constr3), (F2) together with \(M, w \models \mathsf {PRat}_{i}\) and \(M,w \models pl_{i}(s[i])\) imply that:

(G2) there are \(s_{-i}^{\prime }\in S_{-i,1}^{DWDS^{2}-IDSDS}\) and \(s_{-i}^{\prime \prime }\not \in S_{-i,1}^{DWDS^{2}-IDSDS}\) such that \(\kappa _{w,i} (pl_{-i} (s_{-i}^{\prime })) \leq \kappa _{w,i } (pl_{-i}(s_{-i}^{\prime \prime }))\).

But (G2) is in contradiction with (D).

1.4 A.4 Proof of Theorem 6

Let \(\mathit {s}_{} \not \in \mathit {S}_{}^{\mathit {DWDS}^{k+1}-\mathit {IDSDS}} \) and k > 0. Then:

$$\models \mathsf{CBel}_{Agt} \mathsf{AllPRatRBelPRat}_{\mathit{Agt}, k} \rightarrow \neg \mathit{pl}_{} (\mathit{s}_{} ) $$

Proof

The proof is by induction. The proof of the inductive case goes exactly as the proof of the inductive case in the proof of Theorem 4.

Here we only prove the base case.

Base case  For all \(\mathit {s}_{} \not \in \mathit {S}_{k+1}^{\mathit {DWDS}^{k+1}-\mathit {IDSDS}} \) we prove that:

(A1) \( \models \mathsf {CBel}_{Agt} \mathsf { AllPRatRBelPRat}_{\mathit {Agt}, k} \rightarrow \neg \mathit {pl}_{} (\mathit {s}_{} ) \)

To prove (A1), it is sufficient to prove the following validity (B1), as \( \mathsf {CBel}_{Agt} \mathsf { AllPRatRBelPRat}_{\mathit {Agt}, k} \rightarrow \mathsf { AllPRatRBelPRat}_{\mathit {Agt}, k} \) is valid (the proof of this validity is similar to the one given in the proof of Theorem 5 for the validity \( \mathsf {CBel}_{Agt} \mathsf {AllPRat}_{ \mathit {Agt} } \rightarrow \mathsf {AllPRat}_{ \mathit {Agt} } \)).

For all \(\mathit {s}_{} \not \in \mathit {S}_{k+1}^{\mathit {DWDS}^{k+1}-\mathit {IDSDS}} \) we have that:

(B1) \( \models \mathsf {AllPRatRBelPRat}_{\mathit {Agt}, k} \rightarrow \neg \mathit {pl}_{}(\mathit {s}_{} ) \)

We prove something more general than (B1), namely we prove that for all \(J \in 2^{\mathit {Agt}*}\) and for all \(\mathit {s}_{J } \not \in \mathit {S}_{J, k+1}^{\mathit {DWDS}^{k+1}-\mathit {IDSDS}} \):

(C1) \( \models \mathsf { AllPRatRBelPRat}_{J, k} \rightarrow \neg \mathit {pl}_{J } (\mathit {s}_{J} ) \)

The proof of (C1) is again by induction.

Base case  For all \(\mathit {s}_{J } \not \in \mathit {S}_{J, 2}^{\mathit {DWDS}^{2}-\mathit {IDSDS}} \) we have to prove that:

(A2) \( \models ( \mathsf {AllPRat}_{ J } \wedge \mathsf { AllRBelPRat}_{J } ) \rightarrow \neg \mathit {pl}_{J } (\mathit {s}_{J } ) \)

In the proof of Theorem 5 we have proved something stronger than (A2), namely we have proved that if \(\mathit {s}_{} [i] \not \in \mathit {S}_{i,2}^{\mathit {DWDS}^2-\mathit {IDSDS}}\) then \(\models (\mathsf {PRat}_{i}\wedge \bigwedge _{\chi _{-i}\in \mathit {Beh}_{-i}:\mathit {Comp} (\chi _{-i }{,} \mathsf {AllPRat}_{-i})}\mathsf {RBel}_{i}({\chi _{-i}},{\mathsf {AllPRat}_{-i}}))\rightarrow \neg \mathit {pl}_{i}(\mathit {s}_{} [i])\).

Inductive case  Let m be an integer such that m > 1. Let us assume that for all \(J \in 2^{\mathit {Agt}*}\), if \(\mathit {s}_{J } \not \in \mathit {S}_{J, m}^{\mathit {DWDS}^{m}-\mathit {IDSDS}} \) then:

  • (Inductive Hypothesis)  \( \models \mathsf { AllPRatRBelPRat}_{J, m-1} \rightarrow \neg \mathit {pl}_{J } (\mathit {s}_{J } ) \)

We are going to prove that if \(\mathit {s}_{J } \not \in \mathit {S}_{J, m+1}^{\mathit {DWDS}^{m+1}-\mathit {IDSDS}} \) then:

  1. (A3)

    \( \models \mathsf { AllPRatRBelPRat}_{J, m} \rightarrow \neg \mathit {pl}_{J } (\mathit {s}_{J } ) \)

    The proof is by reduction ad absurdum. We take an arbitrary PDL-A + model M and a world w in M. We assume that \(M,w \models \mathsf {AllPRatRBelPRat}_{J, m} \) and \(M,w \models \mathit {pl}_{J } (\mathit {s}_{J})\) and \(\mathit {s}_{J} \not \in \mathit {S}_{J, m+1}^{\mathit {DWDS}^{m+1}-\mathit {IDSDS}} \). We are going to show that these three facts are inconsistent.

    The rest of the proof is based on the following Lemma 3. □

Lemma 3

Let m be an integer such that m > 1 and let \(\chi _{-i}=\bigvee _{\mathit {s}_{-i} \in \mathbf {s}_{-i}}\mathit {pl}_{-i}(\mathit {s}_{-i})\) for some \( \mathbf {s}_{-i}\subseteq \mathit {S}_{-i}\). Then, \(\mathit {Comp} (\chi _{-i}{,}\mathsf {AllPRatRBelPRat}_{-i,m-1})\) if and only if there exists \(\mathit {s}_{-i}\in \mathbf {s}_{-i}\) such that \(\mathit {s}_{-i } \in \mathit {S}_{-i, m}^{\mathit {DWDS}^{m}-\mathit {IDSDS}}\).

Proof of Sketch

The proof of Lemma 3 is again by induction. We only prove the base case (i.e., when \(m =2\)).

(\(\Leftarrow \)) We first prove the right-to-left direction of the equivalence, after assuming that the set of strategy profiles is \(\mathit {S}_{} = \{\mathit {s}_{1}, \ldots , \mathit {s}_{n}\}\) for some \(n \in \mathbb {N}\). Suppose that \(\mathit {s}_{-i } \in \mathit {S}_{-i, 2}^{\mathit {DWDS}^2-\mathit {IDSDS}} \) with \(\mathit {s}_{-i } \in \mathbf {s}_{-i} \). We can exhibit the following PDL-A + model \(M^{\ast } = \langle W^{\ast }, \{\mathcal {E}_{i }^{\ast }: i \in \mathit {Agt}\} , \kappa ^{\ast }, \{\boldsymbol {\mathit {A}}_{i}^{\ast } : i \in \mathit {Agt} \}, {\mathit {V}}^{\ast }\rangle \) where:

  • \(W^{*} = \{w_{1}, \ldots , w_{n} \}\);

  • for all iAgt, \(\mathcal {E}_{i }^{*} = \{(w_{h}, w_{h{\prime }}) : w_{h}, w_{h{\prime }}\in W^{*} \;\text {and}\; \mathit {s}_{h} [i] = \mathit {s}_{h{\prime }}[i]\}\);

  • for all \(w_{h} \in W^{*}\) and for all iAgt, \(\mathcal {A}_{i }^{*} (w_h) = \mathit {s}_{h } [i]\);

  • for all iAgt and for all \(w_{h} \in W^{*}\):

    1. 1.

      \(\kappa ^{*}(w_{h}, i)=0\) if and only if, for all jAgt∖{i}, \(\mathit {s}_{h}[j] \in \mathit {S}_{j, 1 }^{\mathit {DWDS}^{2}-\mathit {IDSDS}}\),

    2. 2.

      \(\kappa ^{*}(w_{h},i)= \mathsf {max} \) if and only if there is \(j \in \mathit {Agt} \setminus \{i\}\) such that \(\mathit {s}_{h} [j] \not \in \mathit {S}_{j,1 }^{\mathit {DWDS}^{2}-\mathit {IDSDS}} \);

  • for all \(w_{h} \in W^{*}\), \( {\mathit {V}}^{*}(w_h) = \mathit {Prop}\).

With the help of Lemma 2 in Section A.3, it is straightforward to verify that \(M^{*}, w^{*} \models \mathit {pl}_{-i}(\mathit {s}_{-i})\wedge \mathsf {AllPRat}_{-i}\) \(\bigwedge _{j \in \mathit {Agt} \setminus \{i\}}\left (\bigwedge _{\substack {\chi _{-j}\in Beh_{-j}:\\ \mathit {Comp} (\chi _{-j}{,} \mathsf {AllPRat}_{-j})}}\right .\) \(\left .\mathsf {RBel}_{j}({\chi _{-j}},{ \mathsf {AllPRat}_{-j}})\right )\) where \(w^{*} \) is a world in \(W^{*}\) such that \(\mathcal {A}_{-i}^{*} (w^{*} ) = \mathit {s}_{-i } \). Therefore, model \(M^{*}\) satisfies \(\mathit {pl}_{-i} (\mathit {s}_{-i }) \wedge \mathsf {AllPRatRBelPRat}_{-i, 1}\). It follows that \(M^{*}\) satisfies \(\chi _{-i} \wedge \mathsf {AllPRatRBelPRat}_{-i, 1} \) too.

(⇒) The left-to-right direction of the equivalence can be proved by reductio ad absurdum. We assume that: (1) \(\mathit {s}_{-i } \not \in \mathit {S}_{-i, 2}^{\mathit {DWDS}^2-\mathit {IDSDS}} \) for all \(\mathit {s}_{-i } \in \mathbf {s}_{-i}\) and (2) there exists \( \mathit {s}_{-i}^{\prime } \in \mathbf {s}_{-i} \) such that \(M, w \models \mathit {pl}_{-i}(\mathit {s}_{-i}^{\prime })\wedge \mathsf {AllPRat}_{-i}\wedge \) \(\bigwedge _{j \in \mathit {Agt}\setminus \{i\}}(\bigwedge _{\substack {\chi _{-j} \in Beh_{-j}: \\ \mathit {Comp}(\chi _{-j}{,}\mathsf {AllPRat}_{-j})}} \mathsf {RBel}_{j}({\chi _{-j}},{\mathsf {AllPRat}_{-j}}))\) for some PDL-A + model M and world w in M. From the assumption (1), it follows that there is \( j \in \mathit {Agt} \setminus \{ i \}\) such that \(\mathit {s}_{- i } '[j] \not \in \mathit {S}_{j, 2}^{\mathit {DWDS}^2-\mathit {IDSDS}} \). From the definition of \( \mathsf {PRat}_{j} ( \mathit {s}_{- i } '[j] )\), by the Constraint (Constr3) over PDL-A + models and with the help of Lemma 1 in Section A.3, we can prove that if \(\mathit {s}_{-i} '[j] \not \in \mathit {S}_{j, 2}^{\mathit {DWDS}^2-\mathit {IDSDS}} \) and \(M,w \models \bigwedge _{\substack {\chi _{-j}\in Beh_{-j}: \\ {\mathit {Comp}(\chi _{-j }{,} \mathsf {AllPRat}_{-j})}}} \mathsf {RBel}_{j}({\chi _{-j}},{\mathsf {AllPRat}_{-j}})\)then \(M,w \models \neg \mathsf {PRat}_{j} ( \mathit {s}_{- i } '[j] )\). Therefore, from the initial assumption that \(M,w \models \mathit {pl}_{-i } ( \mathit {s}_{-i } ' ) \) it follows that \(M,w \models \neg \mathsf {PRat}_{ j }\). The latter is in contradiction with the assumption (2), namely with \(M,w \models \mathsf {AllPRat}_{-i } \).

\(M,w \models \mathsf { AllPRatRBelPRat}_{J, m} \) is equivalent to:

(B3) \( M,w \models \mathsf {AllPRat}_{J}\wedge \bigwedge _{i \in J}\bigwedge _{\chi _{-i}\in \mathit {Beh}_{-i}:\mathit {Comp}}\)

\(\times (\chi _{-i} {,} \mathsf { AllPRatRBelPRat}_{-i, m-1}) \mathsf {RBel}_{i}({\chi _{-i}},{\mathsf { AllPRatRBelPRat}_{-i, m-1}})\)

By inductive hypothesis, (B3) implies that for all \(\mathit {s}_{-i } '' \not \in \mathit {S}_{-i, m}^{\mathit {DWDS}^{m}-\mathit {IDSDS}} \):

(C3) \( M,w \models \bigwedge _{i\in J} \bigwedge _{\chi _{-i} \in \mathit {Beh}_{-i}:\mathit {Comp}}\)

\(\times (\chi _{-i} {,} \mathsf {AllPRatRBelPRat}_{-i, m-1}) \mathsf {RBel}_{i}({\chi _{-i}}{\neg \mathit {pl}_{-i} (\mathit {s}_{-i}'')})\)

From (C3) and Lemma 3 it follows that for all iJ:

(D3) if \(\mathit {s}_{-i}{\prime }\in \mathit {S}_{-i, m}^{\mathit {DWDS}^m-\mathit {IDSDS}} \) and \(\mathit {s}_{-i}{\prime }{\prime }\not \in \mathit {S}_{-i, m}^{\mathit {DWDS}^m-\mathit {IDSDS}} \) then \( \kappa _{w, i} (\mathit {pl}_{-i}(\mathit {s}_{-i}{\prime })) < \kappa _{w, i }(\mathit {pl}_{-i }(\mathit {s}_{-i}{\prime }{\prime }))\).

(The proof of the preceding item (D3) is similar to the proof of the item (D) in the proof of Theorem 5 in Section A.3).

The rest of the proof proceeds as the proof of Theorem 5 in Section A.3 (starting from item (D)). For this reason, we do not repeat it here. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorini, E. On the Epistemic Foundation for Iterated Weak Dominance: An Analysis in a Logic of Individual and Collective attitudes. J Philos Logic 42, 863–904 (2013). https://doi.org/10.1007/s10992-013-9297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-013-9297-z

Keywords

Navigation