Skip to main content
Log in

A Fundamental Problem in Quantizing General Relativity

  • Letter to the Editor
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We point out a fundamental problem that hinders the quantization of general relativity: quantum mechanics is formulated in terms of systems, typically limited in space but infinitely extended in time, while general relativity is formulated in terms of events, limited both in space and in time. Many of the problems faced while connecting the two theories stem from the difficulty in shoe-horning one formulation into the other. A solution is not presented, but a list of desiderata for a quantum theory based on events is laid out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. The equivalence between the Heisenberg and Schrödinger pictures assumes the existence of a Hamiltonian with some regularity conditions [13] and assumes that the Hamiltonian does not have nontrivial dependence on the system’s parameters [14].

  2. Despite appearances, explicit covariance can be attained in quantum field theory in general. In the Heisenberg picture, where the dynamical equations can be written in covariant form, the state implicitly refers to a specific reference frame [15]: a Heisenberg-picture state encodes the system preparation [16] which physically happens at a specific time in some reference frame. This requires a specific timeslice of spacetime to write the Heisenberg state of a field [15] (even though this state is time-independent). Nonetheless, if one considers the preparation procedure as something that can happen on a spacelike surface (a la Tomonaga-Schwinger), then a state transformed through a unitary representation of the Lorentz group encodes the preparation in another reference frame and, in this sense, relativistic covariance is maintained.

  3. “There is no way of defining a relativistic proper time for a quantum system which is spread all over space” [18].

  4. Indeed its interpretation becomes unclear if one uses, as a complete set of observables, the momenta of all the particles. Even the limitation to position observables will not help in the case of multiple systems: it would identify multiple points in spacetime, the positions of particles conditioned on what a clock shows.

  5. Of course, general relativity can also be given a non covariant formulation (geometrodynamics), and also a Hamiltonian formulation [20, 35].

  6. Multi-fingered time refers to the fact that different observers, following different world lines, experience different proper times, e.g. [40,41,42,43].

  7. Incidentally, it appears that post-selected teleportation and the path integral formulation are equivalent procedures [72].

References

  1. Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  2. Reddiger, M.: The Madelung picture as a foundation of geometric quantum theory. Found. Phys. 47, 1317 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Giddings, S.B.: Quantum-first gravity. Found. Phys. 49, 177 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Callender, C., Huggett, N.: Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  5. Kuchar̆, K.V.: An introduction to quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon, Oxford (1981)

    Google Scholar 

  6. Kuchar̆, K.V.: Strings as poor relatives of general relativity. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity. Birkhäuser, Boston (1991)

    Google Scholar 

  7. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer, Dordrecht (1993)

    Google Scholar 

  8. Kuchar̆, K.V.: In: Butterfield, J. (ed.) The Arguments of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  9. Ozawa, M.: Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. 311, 350 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Unruh, W.: Stochadtically branching spacetime topology. In: Savitt, S.F. (ed.) Time’s Arrows Today: Recent Physical and Philosophical Work on the Direction of Time. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  12. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum time. Phys. Rev. D 92, 045033 (2015)

    ADS  MathSciNet  Google Scholar 

  13. Dirac, P.A.M.: Foundations of quantum mechanics. Nature 203, 115 (1964)

    ADS  MATH  Google Scholar 

  14. Franson, J.D.: Velocity-dependent forces, Maxwell’s demon, and the quantum theory. arXiv:1707.08059 (2017)

  15. Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  16. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  17. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  18. Peres, A.: Classical interventions in quantum systems. II. Relativistic invariance. Phys. Rev. A 61, 022117 (2000)

    ADS  MathSciNet  Google Scholar 

  19. Dirac, P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, Philadelphia (1973)

    Google Scholar 

  21. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    ADS  Google Scholar 

  22. Aharonov, Y., Kaufherr, T.: Quantum frames of reference. Phys. Rev. D 30, 368 (1984)

    ADS  MathSciNet  Google Scholar 

  23. McCord Morse, P., Feshbach, H.: Methods of Theoretical Physics, Part I. McGraw-Hill, New York (1953). Chap. 2.6

    MATH  Google Scholar 

  24. Banks, T.: TCP, quantum gravity, the cosmological constant and all that. Nucl. Phys. B 249, 332 (1985)

    ADS  MathSciNet  Google Scholar 

  25. Brout, R.: TCP, quantum gravity, the cosmological constant and all that. Found. Phys. 17, 603 (1987)

    ADS  MathSciNet  Google Scholar 

  26. Brout, R., Horwitz, G., Weil, D.: TCP, quantum gravity, the cosmological constant and all that. Phys. Lett. B 192, 318 (1987)

    ADS  MathSciNet  Google Scholar 

  27. Brout, R.: TCP, quantum gravity, the cosmological constant and all that. Z. Phys. B 68, 339 (1987)

    ADS  Google Scholar 

  28. Vedral, V.: Time, (inverse) temperature and cosmological inflation as entanglement. arXiv:1408.6965 (2014)

  29. Marletto, C., Vedral, V.: Evolution without evolution, and without ambiguities. Phys. Rev. D 95, 043510 (2017)

    ADS  Google Scholar 

  30. Smith, A.R.H., Ahmadi, M.: Quantizing time: interacting clocks and systems. arXiv:1712.00081 (2017)

  31. Rovelli, C.: Quantum Gravity. Cambridge Monographs of Mathematical Physics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  32. Oeckl, R.: A local and operational framework for the foundations of physics. arxiv:1610.09052 (2016)

  33. Oeckl, R.: Reverse engineering quantum field theory. AIP Conf. Proc. 1508, 428 (2012)

    ADS  Google Scholar 

  34. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. Wiley-VCH, Weinheim (2005)

    MATH  Google Scholar 

  35. Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)

    MATH  Google Scholar 

  36. Schutz, B.F.: A First Course in General Relativity. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  37. Yaffe, L.G.: Large N limits as classical mechanics. Rev. Mod. Phys. 54, 407 (1982)

    ADS  MathSciNet  Google Scholar 

  38. Landsman, N.P.: Between classical and quantum. arXiv:quant-ph/0506082 (2005)

  39. Wharton, K.: The universe is not a computer. In: Aguirre, A., Foster, B., Merali, Z. (eds.) Questioning the Foundations of Physics, pp. 177–190. Springer, Heidelberg (2015). arXiv:1211.7081

    Google Scholar 

  40. Dirac, P.A.M.: Relativistic Quantum Mechanics. Proc. R. Soc. Lond. A 136, 453 (1932)

    ADS  MATH  Google Scholar 

  41. Tomonaga, S.: On a relativistically invariant formulation of the quantum theory of wave fields. Prog. Theor. Phys. 1, 27 (1946)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Lienert, M., Petrat, S., Tumulka, R.: Multi-time wave functions versus multiple timelike dimensions. Found. Phys. 47, 1582 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Smith, A.R.H., Ahmadi, M.: Relativistic quantum clocks observe classical and quantum time dilation. arXiv:1904.12390 (2019)

  44. Rideout, D.P., Sorkin, R.D.: Classical sequential growth dynamics for causal sets. Phys. Rev. D 61, 024002 (1999)

    ADS  MathSciNet  Google Scholar 

  45. Markopoulou, F.: The internal description of a causal set. Commun. Math. Phys. 211, 559 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Bisio, A., Chiribella, G., D’Ariano, G.M., Perinotti, P.: Quantum networks: general theory and applications. Acta Phys. Slovaca 61, 273 (2011). arXiv:1601.04864

    ADS  Google Scholar 

  47. Chiribella, G., D’Ariano, G.M., Perinotti, P., Valiron, B.: Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013)

    ADS  Google Scholar 

  48. Dribus, B.F.: Discrete Causal Theory. Springer, Basel (2017). ch. 2.7-2.8

    MATH  Google Scholar 

  49. Oreshkov, O., Costa, F., Brukner, C.: Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)

    ADS  Google Scholar 

  50. Araújo, M., Feix, A., Navascués, M., Brukner, C.: A purification postulate for quantum mechanics with indefinite causal order. Quantum 1, 10 (2017)

    Google Scholar 

  51. Oreshkov, O., Cerf, N.J.: Operational quantum theory without predefined time. New J. Phys. 18, 073037 (2016)

    ADS  MathSciNet  Google Scholar 

  52. Horwitz, L.P.: Quantum interference in time. Found. Phys. 37, 734 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Horwitz, L.P.: On the significance of a recent experimentally demonstrating quantum interference in time. Phys. Lett. A 355, 1 (2006)

    ADS  Google Scholar 

  54. Greenberger, D.M.: Conceptual problems related to time and mass in quantum theory. arXiv:1011.3709 (2010)

  55. Palacios, A., Rescigno, T.N., McCurdy, C.W.: Two-electron time-delay interference in atomic double ionization by attosecond pulses. Phys. Rev. Lett. 103, 253001 (2009)

    ADS  Google Scholar 

  56. Lindner, F., Schätzel, M.G., Walther, H., Baltuska, A., Goulielmakis, E., Krausz, F., Milosević, D.B., Bauer, D., Becker, W., Paulus, G.G.: Attosecond double-slit experiment. Phys. Rev. Lett. 95, 040401 (2005)

    ADS  Google Scholar 

  57. Paulus, G.G., Lindner, F., Walther, H., Baltuska, A., Goulielmakis, E., Lezius, M., Krausz, F.: Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004 (2003)

    ADS  Google Scholar 

  58. Mandelstam, L., Tamm, I.G.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. USSR 9, 249 (1945)

    MathSciNet  MATH  Google Scholar 

  59. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188 (1998)

    ADS  Google Scholar 

  60. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum limits to dynamical evolution. Phys. Rev. A 67, 052109 (2003)

    ADS  Google Scholar 

  61. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927). English translation in [82], pp. 62–84

  62. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    ADS  Google Scholar 

  63. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  64. Kijowski, J.: On the time operator in quantum mechanics and the heisenberg uncertainty relation for energy and time. Rep. Math. Phys. 6, 361 (1974)

    ADS  MathSciNet  Google Scholar 

  65. Piron, C.: Un nouveau principe d’évolution réversible et une géneralisation de l’equation de Schroedinger. C.R. Acad. Seances (Paris) A 286, 713 (1978)

    Google Scholar 

  66. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum spacetime from constrains (in preparation)

  67. Giddings, S.B.: Quantum-first gravity. arXiv:1803.04973v2 [hep-th] (2018) (preprint)

  68. Aharonov, Y., Popescu, S., Tollaksen, J.: Quantum Theory: A Two-Time Success Story, Chaps. 3, pp. 21–36. arXiv:1305.1615 [quant-ph] (2014)

    MATH  Google Scholar 

  69. Fitzsimons, J.F., Jones, J.A., Vedral, V.: Quantum correlations which imply causation. Sci. Rep. 5, 18281 (2015)

    ADS  Google Scholar 

  70. Oreshkov, O., Cerf, N.J.: Operational quantum theory without predefined time. New J. Phys. 18, 073037 (2016)

    ADS  MathSciNet  Google Scholar 

  71. Lloyd, S., Maccone, L., Garcia-Patron, R., Giovannetti, V., Shikano, Y., Pirandola, S., Rozema, L.A., Darabi, A., Soudagar, Y., Shalm, L.K., Steinberg, A.M.: Closed timelike curves via postselection: theory and experimental test of consistency. Phys. Rev. Lett. 106, 040403 (2011)

    ADS  Google Scholar 

  72. Lloyd, S., Maccone, L., Garcia-Patron, R., Giovannetti, V., Shikano, Y.: The quantum mechanics of time travel through post-selected teleportation. Phys. Rev. D 84, 025007 (2011)

    ADS  Google Scholar 

  73. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  74. D’Ariano, G.M., Perinotti, P.: Quantum cellular automata and free quantum field theory. Front. Phys. 12(1), 120301 (2017). arXiv:1608.02004

    Google Scholar 

  75. Blanchard, P., Jadczyk, A.: Event-enhanced quantum theory and piecewise deterministic dynamics. Ann. Physik 4, 583 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  76. Stueckelberg, E.C.G.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta 14, 322 (1941)

    MathSciNet  MATH  Google Scholar 

  77. Stueckelberg, E.C.G.: Remarque à propos de la création de paires de particules en théorie de relativité. Helv. Phys. Acta 14, 588 (1941)

    MathSciNet  MATH  Google Scholar 

  78. Stueckelberg, E.C.G.: La mécanique du point matériel en théorie des quanta. Helv. Phys. Acta 15, 23 (1942)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Gödel, K.: An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation. Rev. Mod. Phys. 21, 447 (1949)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Deutsch, D.: Quantum mechanics near closed timelike lines. Phys. Rev. D 44, 3197 (1991)

    ADS  MathSciNet  Google Scholar 

  81. Malament, D.B.: The class of continuous timelike curves determines the topology of spacetime. J. Math. Phys. 18, 1399 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  82. Wheeler, J.A., Zurek, H.: Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

Download references

Acknowledgements

I acknowledge many fruitful discussions and a longstanding collaboration with V. Giovannetti and S. Lloyd. I acknowledge funding from Unipv “Blue sky” Project-Grant No. BSR1718573 and the FQXi foundation Grant FQXi-RFP-1513 “the physics of what happens”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Maccone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maccone, L. A Fundamental Problem in Quantizing General Relativity. Found Phys 49, 1394–1403 (2019). https://doi.org/10.1007/s10701-019-00311-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00311-w

Keywords

Navigation