Skip to main content
Log in

The Minimal, Phase-Transition Model for the Cell-Number Maintenance by the Hyperplasia-Extended Homeorhesis

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Oncogenic hyperplasia is the first and inevitable stage of formation of a (solid) tumor. This stage is also the core of many other proliferative diseases. The present work proposes the first minimal model that combines homeorhesis with oncogenic hyperplasia where the latter is regarded as a genotoxically activated homeorhetic dysfunction. This dysfunction is specified as the transitions of the fluid of cells from a fluid, homeorhetic state to a solid, hyperplastic-tumor state, and back. The key part of the model is a nonlinear reaction-diffusion equation (RDE) where the biochemical-reaction rate is generalized to the one in the well-known Schlögl physical theory of the non-equilibrium phase transitions. A rigorous analysis of the stability and qualitative aspects of the model, where possible, are presented in detail. This is related to the spatially homogeneous case, i.e. when the above RDE is reduced to a nonlinear ordinary differential equation. The mentioned genotoxic activation is treated as a prevention of the quiescent G0-stage of the cell cycle implemented with the threshold mechanism that employs the critical concentration of the cellular fluid and the nonquiescent-cell-duplication time. The continuous tumor morphogeny is described by a time-space-dependent cellular-fluid concentration. There are no sharp boundaries (i.e. no concentration jumps exist) between the domains of the homeorhesis- and tumor-cell populations. No presumption on the shape of a tumor is used. To estimate a tumor in specific quantities, the model provides the time-dependent tumor locus, volume, and boundary that also points out the tumor shape and size. The above features are indispensable in the quantitative development of antiproliferative drugs or therapies and strategies to prevent oncogenic hyperplasia in cancer and other proliferative diseases. The work proposes an analytical-numerical method for solving the aforementioned RDE. A few topics for future research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot, A. (2003). Biology's new dimension. Nature 424(21 August): 870–872.

    Article  Google Scholar 

  • Akabani, G., R.E. McLendon, D.D. Bigner and M.R. Zalutsky (2002). Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: Theoretical analysis. Int. J. Radiation Oncology Biol. Phys. 54(4): 1259–1275.

    Article  Google Scholar 

  • Albano, A.M., N.B. Abraham, D.E. Chyba and M. Martelli (1984). Bifurcations, propagating solutions, and phase transitions in a nonlinear chemical reaction with diffusion. Am. J. Phys. 52(2): 161–167.

    Article  Google Scholar 

  • Antipas, V.P., G.S. Stamatakos, N.K. Uzunoglu, D.D. Dionysiou and R.G. Dale (2004). A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: Parametric validation concerning oxygen enhancement ratio and cell cycle duration. Phys. Med. Biol. 49: 1485–1504.

    Article  Google Scholar 

  • Baucke E., R. Behrends, K. Fuchs, R. Hagen and U. Kaatze (2004). Kinetics of Ca2+ complexation with some carbohydrates in aqueous solutions. J. Chem. Phys. 120(7): 8118–8124.

    Article  Google Scholar 

  • Bellomo, N., A. Bellouquid and E. De Angelis (2003a). The modelling of the immune competition by generalized kinetic (Boltzmann) models: Review and research perspectives. Mathl. Comput. Modelling 37(1–2): 65–85.

    Article  Google Scholar 

  • Bellomo, N., N. Calander, E. Mamontov and M. Willander (2003b). The generalized-kinetics-based equilibrium distribution function for composite particles, Comptes Rendus Mecanique 331(7): 461–467.

    Article  Google Scholar 

  • Bellomo, N. and E. De Angelis (1998). Strategies of applied mathematics towards an immuno-mathematical theory on tumors and immune system interactions. Math. Models Methods Appl. Sci. 8(8): 1403–1429.

    Article  Google Scholar 

  • Bellomo, N., B. Firmani and L. Guerri (1999). Bifurcation analysis for a nonlinear system of integro-differential equations modelling tumor-immune cells competition. Appl. Math. Lett. 12(2): 39–44.

    Article  Google Scholar 

  • Bellomo, N., E. Mamontov and M. Willander (2003c). The generalized kinetic modelling of a multi-component “real-life” fluid by means of a single distribution function. Mathl Comput. Modelling, 38(5–6): 637–659.

    Article  Google Scholar 

  • Bellomo, N. and L. Preziosi (2000). Modelling and mathematical problems related to tumor evolution and its interaction with the immune system. Mathl. Comput. Modelling 32(3–4): 413–452.

    Article  Google Scholar 

  • Beltrami, E. and J. Jetsy (1995). Mathematical analysis of activation thresholds in enzyme-catalyzed positive feedbacks: Application to the feedbacks of blood coagulation. Proc. Natl. Acad. Sci. USA 92(19): 8744–8748.

    Article  Google Scholar 

  • Bishop, J.M. (1991). Molecular themes in oncogenesis. Cell 64: 235–248.

    Article  Google Scholar 

  • Bullough, W.S. (1962). The control of mitotic activity in adult mammalian tissues. Biol. Rev. 37: 307–342.

    Google Scholar 

  • Burton, A.C. (1966). Rate of growth of solid tumours as a problem of diffusion. Growth 30: 157–176.

    Google Scholar 

  • Campbell, M.K. and S.O. Farrell (2003). Biochemistry. Thomson Learning, Australia.

    Google Scholar 

  • Cannon, W.B. (1929). Organization for physiological homeostasis. Physiol. Rev. 9: 399–431.

    Google Scholar 

  • Chaplain, M.A.J., M. Ganesh and I.G. Graham (2001). Spatio-temporal pattern formation on spherical surfaces: Numerical simulation and application to solid tumor growth. J. Math. Biol. 42(5): 387–423.

    Article  Google Scholar 

  • Chen, K. and K. Aihara (2002). A model of periodic oscillation for genetic regulator systems, IEEE Trans. Circuits and Systems — I: Fundamental Theory and Applications 49: 1429–1436.

    Article  Google Scholar 

  • De Angelis, E. and L. Preziosi (2000). Advection-diffusion models for solid tumour evolution in vivo and related free boundary problem. Math. Models Methods Appl. Sci. 10(3): 379–407.

    Article  Google Scholar 

  • Demidovič, B.P. (1967). Lectures on the mathematical theory of stability. Nauka. Moscow (In Russian; Mathematical Reviews 1716).

    Google Scholar 

  • DePinho, R.A. (2000). The age of cancer. Nature 408: 248–254.

    Article  Google Scholar 

  • Dwight, H.B. (1961). Tables of Integrals and Other Mathematical Data. The Macmillan Company, New York.

    Google Scholar 

  • Ferreira, S.C., Jr., M.L. Martins and M.J. Vilela (2002). Reaction-diffusion model for the growth of avascular tumor. Phys. Rev. E 65: 021907/1–021907/8.

    Google Scholar 

  • Franks, L.M. and N.M. Teich (Eds.) (1997). Introduction to the Cellular and Molecular Biology of Cancer. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Freeman, M. (2000). Feedback control of intercellular signalling in development. Nature 408(16 Nov.): 313–319.

    Article  Google Scholar 

  • Freidlin, M.I. and A.D. Wentzell (1998). Random Perturbations of Dynamical Systems. Springer-Verlag, New York.

    Google Scholar 

  • Gardiner, C.W. (1994). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer-Verlag, New York.

    Google Scholar 

  • Gove, P.B. Ed. (1993). Webster's Third New International Dictionary of the English Language (Unabridged, Utilizing all the experience and resources of more than one hundred years of Merriam-Webster dictionaries). Merriam-Webster, Springfield (MA, USA); 2662 pp., ISBN 3-8290-5292-8.

    Google Scholar 

  • Haken, H. (1977). Synergetics — An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics. Chemistry and Biology. Springer-Verlag, Berlin.

    Google Scholar 

  • Hatzimanikatis, V., K.H. Lee and J.E. Bailey (1999). A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnology and Bioengineering 65(6): 631–637.

    Article  Google Scholar 

  • Haus, E. and M.H. Smolensky (1999). Biologic rhythms in the immune system. Chronobiology International 16(5): 581–622.

    Article  Google Scholar 

  • Hazewinkel, M. (Ed.) (1988a). Encyclopaedia of Mathematics. Vol. 1 — C. Kluwer, Dordrecht.

    Google Scholar 

  • Hazewinkel, M. (Ed.) (1988b). Encyclopaedia of Mathematics. Vol. 2 — C. Kluwer, Dordrecht.

    Google Scholar 

  • Hughes, L. (2001). AstraZeneca and cancer discovery from a global perspective. Nature 411(6835): 396.

    Article  Google Scholar 

  • Israel, L. (1996). Tumor progression: Random mutations or integrated survival response to cellular stress conserved from unicellular organisms. J. Theor. Biol. 178: 375–380.

    Article  Google Scholar 

  • Iversen, O.H. (1965). Cybernetic aspects of the cancer problem, In: Progress in Biocybernetics (N. Wiener and J. P. Shade, Eds.). Vol. 2, pp. 76–110. Amsterdam, Elsevier.

    Google Scholar 

  • Jiang, Y., J. Pjesivac and J. Freyer (2002). A cellular model for avascular tumor growth. In: Abstracts of ICSB 2002, the 3rd International Conference on System Biology — “The Logic of Life” (December 13-15, 2002, Karolinska Institutet, Stockholm, Sweden), pp. 123–124;http://www.ki.se/icsb2002/abstracts.html.

  • Kar, S., S.K. Banik and D.S. Ray (2002). Class of self-limiting growth models in the presence of nonlinear diffusion. Phys. Rev. E 65: 061909/1–061909/5.

    Article  Google Scholar 

  • Katzung, B.G. (2001). Basic and Clinical Pharmacology. Lange Medical Books/McGraw-Hill, New York.

    Google Scholar 

  • Kawai, K., H. Kawamata, S. Kemeyama, A. Rademaker and R. Oyasu (1994). Persistence of carcinogen-altered cell population in rat urothelium which can be promoted to tumors by chronic inflammatory stimulus. Cancer Res. 54(10): 2630–2632.

    Google Scholar 

  • Keenan, K.P., U. Saffiotti, S.F. Stinson, C.W. Riggs and E.M. McDowell (1989). Multifactorial hamster respiratory carcinogenesis with interdependent effects of cannula-induced mucosal wounding, saline, ferric oxide, benzo[a]pyrene and N-methyl-N-nitrosourea. Cancer Res. 49(6): 1528–1540.

    Google Scholar 

  • Kerbel, R.S., P. Frost, R. Liteplo, D.A. Carlow and B.E. Elliott (1984). Possible epigenic mechanisms of tumor progression: Induction of high-frequency heritable but phenotipically unstable changes in the tumorigenic and metastatic properties of tumor cell populations by 5-azacytidine treatment. J. Cellular Physiology supplement 3: 87–97.

    Article  Google Scholar 

  • Kitano, H. (2002). Computational systems biology. Nature 420(14 Nov.): 206–210.

    Article  Google Scholar 

  • Kitano, H. (2003). Tumour tactics. Nature 426(13 Nov.): 125.

    Article  Google Scholar 

  • Kitazono, A.A., J.N. Fitz Gerald and S.J. Kron (1999). Cell Cycle: Regulation by Cyclins. In: Nature Encyclopedia of Life Sciences, December 1999, London. Nature Publishing Group; http://www.els.net/; [doi:10.1038/npg.els.0001364].

    Google Scholar 

  • DeWitt, A., D. Lauffenburger and H.S. Wiley (1999). The effect of cellular parameters on the spatial operation of an autocrine system. In: Proceedings of the 1st Joint BMES/EMBS Conference. Vol. 1, p. 105. New York, IEEE.

    Chapter  Google Scholar 

  • Koptioug, A.V. and E. Mamontov (2004). Toward prevention of hyperplasia in oncogeny and other proliferative diseases: The role of the cell genotoxicity in the model-based strategies. In: 7th Ann. Conf. in Göteborg, Sweden, “Functional Genomics — From Birth to Death”, 19–20 August, 2004. Programme and Abstract Book, 1pp. Abstract, Oral Presentation, and Poster. Gothenburg, Gothenburg Univ.; http://funcgenomics.lundberg.gu.se/.

  • Koptioug, A.V., E. Mamontov, Z. Taib and M. Willander (2004). The phase-transition morphogenic model for oncogeny as a genotoxic homeostatic dysfunction: Interdependence of modeling, advanced measurements, and numerical simulation. In: ICSB2004, 5th Int. Conf. Systems Biology, 9–13 October, 2004, 1 pp. Abstract and Poster. Heidelberg; the PDF file for the poster list can be downloaded at http://www.icsb2004. org/.

  • Lachenbruch, P.A. and D.R. Brogan (1971). Some distributions on the positive real line which have no moments. The American Statistician 25(1): 46–47.

    Article  Google Scholar 

  • Lavagna, C., J.-C. Poirée, S. Fournel and P. Rampal (1999). Purification of a new intestinal anti-proliferative factor from normal human small intestine. Eur. J. Biochem. 259: 821–828.

    Article  Google Scholar 

  • Levin, S.A. and L.A. Segel (1985). Pattern generation in space and aspect, SIAM Rev. 27(1): 45–67.

    Article  Google Scholar 

  • Lichtenstein, A.V. and L.A. Potapova (2003). Genetic defects as tumor markers. Molecular Biology 37(2): 181–193.

    Article  Google Scholar 

  • Life, Death and the Immune System (1993). Special Issue, Scientific American 269(3, September).

  • Lopez, A.M., M.D. Pegram, D.J. Slamon and E.M. Landaw (1999). A model-based approach for assessing in vivo combination therapy interactions. PNAS 96(23): 13023–13028.

    Article  Google Scholar 

  • Malumbers, M. and M. Barbacid (2001). To cycle or not to cycle: A critical decision in cancer. Nature Reviews — Cancer 1(December): 222–231.

    Article  Google Scholar 

  • Mamontov, E. (2006). Modelling homeorhesis with ordinary differential equations. Mathl. Comput. Modelling, in press.

  • Mamontov, E., K. Psiuk-Maksymowicz and A. Koptioug (2006). Stochastic mechanics in the context of the properties of living systems. Mathl. Comput. Modelling 44(7–8): 595–607.

    Article  Google Scholar 

  • Mamontov, E. and K. Psiuk-Maksymowicz (2005). On homeorhesis in the modelling living systems with Markov stochastic processes, to be submitted.

  • Mamontov, E. (2005). A specification of the Maxwell-Rayleigh-Heisenberg approach to modelling fluids for bioelectronic applications. Mathl. Comput. Modelling 42(3–4): 441–470.

    Article  Google Scholar 

  • Mamontov, E., Z. Taib, K. Psiuk-Maksymowicz and A.V. Koptioug (2005). The cell-automitogen interpretation and parameter determination of the PhasTraM model, to be submitted.

  • Mamontov, Y.V. and M. Willander (2001). High-Dimensional Nonlinear Diffusion Stochastic Processes. Modelling for Engineering Applications. World Scientific, Singapore.

    Google Scholar 

  • Mamontov, E. and M. Willander (2002). The nonzero minimum of the diffusion parameter and the uncertainty principle for a Brownian particle. Modern Physics Letters B 16(13): 467–471.

    Article  Google Scholar 

  • Mamontov, E. and M. Willander (2003). Electrochemical potentials and pressures of biofluids from common experimental data. Acta Biotheoretica 51(3): 173–180.

    Article  Google Scholar 

  • Marušić, M., Ž. Bajzer, J.P. Freyer and S. Vuk-Pavlović (1994a). Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 27(2): 73–94.

    Google Scholar 

  • Marušić, M., Ž. Bajzer, S. Vuk-Pavlović and J.P. Freyer (1994b). Tumor growth in vivo and as multi-cellular spheroids compared by mathematical models. Bull. Math. Biol. 56(4):617–631.

    Google Scholar 

  • Massagué, J. (2004). G1 cell-cycle control and cancer. Nature 432(18 November): 298–306.

    Article  Google Scholar 

  • Novák, B. and J.J. Tyson (2004). A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230: 563–579.

    Article  Google Scholar 

  • Ohtsubo, M. and J.M. Roberts (1993). Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259(26 March): 1908–1912.

    Google Scholar 

  • Panetta P.D., B. Tucker, R.A. Pappas and S. Ahmed (2003). Characterization of solid liquid suspensions utilizing ultrasonic measurements. In: IMTC'03. Ptoc. 20th IEEE Instrumentation and Measurement Conf., Vol. 2 (IEEE, New York), pp. 1263–1268.

    Chapter  Google Scholar 

  • Pennisi, E. (2003). Tracing life's circuitry. Science 302(5 Dec.): 1646–1649.

    Article  Google Scholar 

  • Pettet, G.J., C.P. Please, M.J. Tindall and D.L.S. McElwain (2001). The migration of cells in multi-cell tumor spheroids. Bulletin of Mathematical Biology 63(2): 231–257.

    Article  Google Scholar 

  • Please, C.P., M.J. Tindall and D.L.S. McElwain (2001). The migration of cells in multi-cell tumor spheroids. Bull. Math. Biol. 63: 231–257.

    Article  Google Scholar 

  • Potter, V.R. (1945). The role of nutrition in cancer prevention. Science 101(2614): 105–109.

    Google Scholar 

  • Psiuk-Maksymowicz, K. and E. Mamontov (2005). The time-slice method for rapid solving the Cauchy problem for nonlinear reaction-diffusion equations in the competition of homeorhesis with genotoxically activated oncogenic hyperplasia. In: The European Conference on Mathematical and Theoretical Biology — ECMTB05, July 18–22, 2005, Book of Abstracts, Vol. 1 (Center for Information Services and High Performance Computing, Dresden University of Technology, Dresden, Germany, 2005); http://www.ecmtb05.org/), p. 429 (abstract for oral presentation).

  • Psiuk-Maksymowicz, K. and E. Mamontov (2006). The homeorhesis-based modelling and fast numerical analysis for oncogenic hyperplasia under radiotherapy. Submitted.

  • Rashevsky, N. (1938). An approach to the mathematical biophysics of biological self-regulation and of cell polarity. Acta Biotheoretica 4: 133–153.

    Article  Google Scholar 

  • Rashevsky, N. (1940)–(1940a). An approach to the mathematical biophysics of biological self-regulation and of cell polarity, Bull. Math. Biophys. 2: 15-25; (1940b). Further contribution to the theory of cell polarity and self-regulation, Bull. Math. Biophys. 2: 65–67; (1940c). Physicomathematical aspects of some problems of organic form. Bull. Math. Biophys. 2: 109–121.

    Article  Google Scholar 

  • Reichl, L.E. (1998). A Modern Course in Statistical Physics. John Wiley & Sons, New York.

    Google Scholar 

  • Schlögl, F. (1971). On thermodynamics near a steady state. Zeitschrift für Physik A (Atoms and Nuclei) 248(5): 446–458.

    Google Scholar 

  • Schlögl, F. (1972). Chemical reaction models for non-equilibrium phase transitions. Zeitschrift für Physik A (Atoms and Nuclei) 253(2): 147–161.

    Google Scholar 

  • Sennaoui A., M. Boynard and C. Pautou (1997). Characterization of red blood cell aggregate formation using an analytical model of the ultrasonic backscattering coefficient. IEEE Trans. Biomed. Engineering 44(7): 585–591.

    Article  Google Scholar 

  • Sherr, C.J. (1995). D-type cyclins. Trends in Biochemical Sciences 20(5): 187–190.

    Article  Google Scholar 

  • Sherratt, J.A. (1993). Cellular growth control and travelling waves of cancer. SIAM J. Appl. Math. 53(6): 1713–1730.

    Article  Google Scholar 

  • Steuer, R. (2004). Effect of stochasticity in models of the cell cycle: From quantized cycle times to noise-induced oscillations. J. Theor. Biol. 228: 293–301.

    Article  Google Scholar 

  • Stöcker, S. and M.G. Curci (1998). Modelling and simulating the effect of cytokines on the immune response to tumor cells. Mathl. Comput. Modelling 28(3): 1–13.

    Article  Google Scholar 

  • Tan, W.Y. and C.W. Chen (1998). Stochastic modelling of carcinogenesis: Some new insights. Mathl. Comput. Modelling 28(11): 49–71.

    Article  Google Scholar 

  • Trosko, J.E., C.C. Chang and B.V. Madhukar (1990). Modulation of intercellular communication during radiation and chemical carcinogenesis. Radiation Research 123(3): 241–251.

    Google Scholar 

  • Trosko, J.E. (1996). Role of low-level ionizing radiation in multi-step carcinogenic process. Health Physics 70(6): 812–822.

    Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. London, Ser. B 237: 37–72.

    Google Scholar 

  • Turing, A. (1992). Morphogenesis. North-Holland Publishing, Amsterdam.

    Google Scholar 

  • Ubezio, P. (2004). Unraveling the complexity of cell cycle effects of anticancer drugs in cell populations. Discrete and Continuous Dynamical Systems — Ser. B 4(1): 323–335.

    Article  Google Scholar 

  • Vicini, P., M.R. Gastonguay and D.M. Foster (2002). Model-based approaches to biomarker discovery and evaluation: A multidisciplinary integrated review. Critical Reviews in Biomedical Engineering 30(4–6): 379–418.

    Google Scholar 

  • Waddington, C.H. (1957). The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. George Allen and Unwin, London.

    Google Scholar 

  • Waddington, C.H. (1968). Towards a theoretical biology. Nature 218(May 11): 525–527.

    Article  Google Scholar 

  • Ward, J.P. and J.R. King (1997). Mathematical modelling of avascular-tumour growth. IMA J. Mathematics Applied in Medicine and Biology 14: 39–69.

    Google Scholar 

  • Ward, J.P. and J.R. King (2003). Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Mathematical Biosciences 181: 177–207.

    Article  Google Scholar 

  • Willander, M., E. Mamontov and Z. Chiragwandi (2004). Modelling living fluids with the subdivision into the components in terms of probability distributions. Math. Models Methods Appl. Sci. 14(10): 1495–1520.

    Article  Google Scholar 

  • Yates, F.E. (1979). Physical biology: A basis for modeling living fluids. J. Cybernetics and Information Science 2(2–4): 59–70.

    Google Scholar 

  • Yates, F.E. and A.S. Iberall (1982). A skeleton on physical ideas for the dynamics of complex systems. Math. Comput. Simul. 24: 430–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mamontov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamontov, E., Koptioug, A. & Psiuk-Maksymowicz, K. The Minimal, Phase-Transition Model for the Cell-Number Maintenance by the Hyperplasia-Extended Homeorhesis. Acta Biotheor 54, 61–101 (2006). https://doi.org/10.1007/s10441-006-8263-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-006-8263-3

Keywords

Navigation