Skip to main content
Log in

Dynamical Behaviour of Viral Cycle and Identification of Steady States

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The molecular biology of viruses can be effectively described by kinetic logic as several feedback loops are implicated in all viral cycles and as viral proteins generally display several functions. We applied this method to the study of the rhabdovirus cycle.

Formally, the dynamics of the model are explored on the basis of a discrete caricature (kinetic logic), with special emphasis on the role of the constitutive feedback loops to determine the essential dynamical behaviour of the viral cycle. From a biological point of view, our model accounts for several stable regimes or attractors: healthy cells, acute infection and different kinds of persistent infections, a multistationarity in good agreement with the existence of several positive feedback loops in our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahmed, R., L.A. Morrison and D.M. Knipe (1996). Persistence of Viruses. In: B.N. Fields (ed.), Virology, third edition, pp. 219-249. New York, Raven Press.

    Google Scholar 

  • Baer, G.M., W.J. Bellini and D.B. Fishbein (1990). Rhabdoviruses. In: B.N. Fields and D.M. Knipe (ed.), Virology, second edition, pp. 883-930. New York, Raven Press.

    Google Scholar 

  • Banerjee, A.K. and S. Barik (1992). Gene expression of vesicular stomatitis virus genome. Virology 188: 417-428.

    Google Scholar 

  • Blondel, D., A.M. Petitjean, S. Dezelee and F. Wyers (1988). Vesicular stomatitis virus in Drosophila melanogaster cells: regulation of viral transcription and replication. Journal of Virology 62: 277-284.

    Google Scholar 

  • Chenik, M., K. Chebli, Y. Gaudin and D. Blondel (1994). In vivo interactions of rabies virus phosphoprotein (P) and nucleoprotein (N): existence of two N binding sites on P protein. Journal of General Virology 75: 2889-2896.

    Google Scholar 

  • Demongeot, J. (1998). Multistationarity and cell differentiation. Journal of Biological Systems 6: 1-2.

    Google Scholar 

  • Flamand, A. (1980). Rhabdovirus genetics. In: D.H.L. Bishop (ed.), Rhabdoviruses 11, pp. 115-139. Boca Raton, Ann Arbor, Boston, CRC Press.

    Google Scholar 

  • Gilden, D.H. (1983). Slow virus disease of the CNS I-Subacute sclerosing panencephalitis, progressive rubella panencephalitis, and progressive multifocal leuko-encephalopathy. Postgraduate Medicine 73: 99-118.

    Google Scholar 

  • Gouzé, J.L. (1998). Positive and Negative circuits in dynamical systems. Journal of Biological Systems 6: 11-15.

    Google Scholar 

  • Holland, J.J. and A. Levine (1978). Mechanism of viral persistence. Cell 14: 447-452.

    Google Scholar 

  • Martinet, C., A. Combard, C. Printz-Ané and P. Printz (1979). Envelope proteins and replication of vesicular stomatitis virus: in vivo effects of RNA+ temperature-sensitive mutations on viral RNA synthesis. Journal of Virology 29: 123-133.

    Google Scholar 

  • Martinet-Edelist, C., C. Printz-Ané and A. Combard (1987). Formalisation booléenne du cycle d'un rhabdovirus. In: H. Lück (ed.), Actes du 5ème Séminaire de Biologie théorique, pp. 215-227. Paris 1987, Editions du CNRS.

    Google Scholar 

  • Martinet-Edelist, C. (1994). A logical description of the evolution of feedback loop systems and its application to rhabdovirus infection. Journal of Biological Systems 2: 55-72.

    Google Scholar 

  • Morongiello, M.P. and R.W. Simpson (1979). Conditional lethal mutants of vesicular stomatitis virus. IV RNA species detected in non-permissive cells infected with host-restricted mutants. Virology 93: 506-514.

    Google Scholar 

  • Muraille, E., D. Thieffry, O. Leo and M. Kaufman (1996). Toxicity and neuroendocrine regulation of the immune response: a model analysis. Journal of Theoretical Biology 183: 285-305.

    Google Scholar 

  • Nowakowski, M., B.R. Bloom, E. Ehrenfeld and D.F. Summers (1973). Restricted replication of vesicular stomatitis virus in human lymphoblatoid cells. Journal of Virology 12: 1272-1278.

    Google Scholar 

  • Pastoret, P.P., E. Thiry and R. Thomas (1986). Logical description of bovine herpes virus type1 latent infection. Journal of General Virology 67: 885-897.

    Google Scholar 

  • Plahte, E., T. Mestl and S. W. Omholt (1995). Feedback loops, stability and multistationarity in dynamical systems. Journal of Biological Systems 3: 409-413.

    Google Scholar 

  • Préhaud, C., P. Coulon, A. Diallo, C. Martinet-Edelist and A. Flamand (1989). Characterization of a new temperature-sensitive and avirulent mutant of the rabies virus. Journal of General Virology 70: 133-143.

    Google Scholar 

  • Pringle, C.R. (1978). The TdCE and hrCE phenotypes: host range mutants of vesicular stomatitis virus in which polymerase function is affected. Cell 15: 597-606.

    Google Scholar 

  • Snoussi, E.H. (1989). Qualitative dynamics of piecewise linear differential equations: a discrete mapping approach. Dynamics and Stability of Systems. 4: 189-207.

    Google Scholar 

  • Snoussi, E.H. (1998). Necessary conditions for multistationarity and stable periodicity. Journal of Biological Systems 6: 3-9.

    Google Scholar 

  • Snoussi, E.H. and R. Thomas (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. Bulletin of Mathematical Biology 55: 973-991.

    Google Scholar 

  • Stroop, W.G. and J.R. Baringer (1982). Persistent, slow and latent viral infections. Progress in Medical Virology 28: 1-43.

    Google Scholar 

  • Thieffry, D. and R. Thomas (1995). Dynamical behaviour of biological regulatory networks.-II Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology 57: 277-297.

    Google Scholar 

  • Thieffry, D. and R. Thomas (1998). Qualitative analysis of gene networks. In: R. B. Altman, A. K. Dunker, L. Hunter and T. E. Klein (ed.), Pacific Symposium on Biocomputing 98, pp. 77-88. Singapore, New Jersey, London, Hong Kong, World Scientific.

    Google Scholar 

  • Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42: 563-585.

    Google Scholar 

  • Thomas, R. (1978). Logical analysis of system comprising feedback loops Journal of Theoretical Biology 73: 631-656.

    Google Scholar 

  • Thomas, R. (1983). Logical description, analysis and synthesis of biological and other networks comprising feedback loops. Advances in Chemical Physics 55: 247-282.

    Google Scholar 

  • Thomas, R. (1993). Logical identification of all steady states. In: J. Demongeot and V. Capasso (ed.), Mathematics applied to Biology and Medicine, pp. 345-357. Winnipeg, Canada, Wuerz Publishing Ltd.

    Google Scholar 

  • Thomas, R. and R. d'Ari (1990). Biological Feedback. Boca Raton, Ann Arbor, Boston, CRC Press.

    Google Scholar 

  • Thomas, R. and D. Thieffry (1995). Fr Les boucles de rétroaction rouages des réseaux de régulation biologiques. médecine/sciences 11: 189-197.

    Google Scholar 

  • Thomas, R., D. Thieffry and M. Kaufman (1995). Dynamical behaviour of biological regulatory networks.-I Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bulletin of Mathematical Biology: 247-276.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinet-Edelist, C. Dynamical Behaviour of Viral Cycle and Identification of Steady States. Acta Biotheor 47, 267–280 (1999). https://doi.org/10.1023/A:1002651023624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002651023624

Keywords

Navigation