Skip to main content

The Computing Spacetime

  • Conference paper
How the World Computes (CiE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7318))

Included in the following conference series:

Abstract

The idea that the Universe is a program in a giant quantum computer is both fascinating and suffers from various problems. Nonetheless, it can provide a unified picture of physics and this is very useful for the problem of Quantum Gravity where such a unification is necessary. We give an introduction to the idea of the universe as a quantum computation, the problem of Quantum Gravity, and Quantum Graphity, a simple way to model a dynamical spacetime as a quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: A status report, Class. Quant. Grav. 21, R53 (2004)

    Google Scholar 

  2. Ashtekar, A., Stachel, J.: Conceptual Problems of Quantum Gravity. Springer (1991)

    Google Scholar 

  3. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for your Mathematical Plays. AK Peters Ltd. (2001)

    Google Scholar 

  4. Bilson-Thompson, S.O., Markopoulou, F., Smolin, L.: Quantum Gravity and the Standard Model. Class. Quant. Grav. 24, 3975 (2005)

    Article  MathSciNet  Google Scholar 

  5. Brandenberger, R.: Inflationary Cosmology: Progress and Problems, hep-ph/9910410

    Google Scholar 

  6. Caravelli, F., Hamma, A., Markopoulou, F., Riera, A.: Trapped surfaces and emergent curved space in the Bose-Hubbard model. Phys. Rev. D, arxiv:1108 (to appear, 2013)

    Google Scholar 

  7. Carroll, S.: The Cosmological Constant, astro-ph/0004075

    Google Scholar 

  8. Dennett, D.C.: Consciousness explained. Back Bay Books, Boston (2001)

    Google Scholar 

  9. Deutsch, D.: Physics, Philosophy and Quantum Technology. In: Shapiro, J.H., Hirota, O. (eds.) The Sixth International Conference on Quantum Communication, Measurement and Computing. Rinton Press, Princeton (2003)

    Google Scholar 

  10. Eisert, J., Osborne, T.J.: General Entanglement Scaling Laws from Time Evolution. Phys. Rev. Lett. 97, 150404 (2006)

    Article  MathSciNet  Google Scholar 

  11. Hamma, A., Markopoulou, F., Premont-Schwarz, I., Severini, S.: Lieb-Robinson bounds and the speed of light from topological order. Phys. Rev. Lett. 102, 017204, arXiv:0808.2495v2 [quant-ph]

    Google Scholar 

  12. Hamma, A., Markopoulou, F., Lloyd, S., Caravelli, F., Severini, S., Markstrom, K.: A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime. Phys. Rev. D 81, 104032 (2010)

    Article  Google Scholar 

  13. Hawkins, E., Markopoulou, F., Sahlmann, H.: Algebraic Causal Histories. Class. Q. Grav. 20, 3839 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hossenfelder, S.: Experimental Search for Quantum Gravity, arxiv:1010.3420

    Google Scholar 

  15. Isham, C.J.: Prima Facie Questions in Quantum Gravity, gr-qc/9310031

    Google Scholar 

  16. Konopka, T., Markopoulou, F., Severini, S.: Quantum Graphity: a model of emergent locality. Phys. Rev. D 77, 104029 (2008)

    Article  MathSciNet  Google Scholar 

  17. Levin, M., Wen, X.G.: Fermions, strings, and gauge fields in lattice spin models. Phys. Rev. B 67, 245316 (2003)

    Article  Google Scholar 

  18. Levin, M.A., Wen, X.G.: String-net condensation: A physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)

    Article  Google Scholar 

  19. Levin, M., Wen, X.G.: Quantum ether: Photons and electrons from a rotor model. arXiv:hep-th/0507118

    Google Scholar 

  20. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  Google Scholar 

  21. Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes On the Cosmos, Knopf (2006)

    Google Scholar 

  22. Markopoulou, F.: Quantum Causal Histories. Class. Q. Grav. 17, 2059 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nachtergaele, B., Sims, R.: Lieb-Robinson Bounds in Quantum Many-Body Physics. In: Sims, R., Ueltschi, D. (eds.) Entropy and the Quantum. Contemporary Mathematics, vol. 529, pp. 141–176. American Mathematical Society (2010)

    Google Scholar 

  24. Prémont-Schwarz, I., Hamma, A., Klich, I., Markopoulou-Kalamara, F.: Lieb-Robinson bounds for commutator-bounded operators, arXiv:0912.4544v1 [quant-ph]

    Google Scholar 

  25. Rovelli, C.: Quantum Gravity. Cambridge U. Press, New York (2004)

    Book  MATH  Google Scholar 

  26. Susskind, L.: The Black Hole War, Little, Brown (2008)

    Google Scholar 

  27. Tegmark, M.: The Multiverse Hierarchy, arxiv:0905.1283

    Google Scholar 

  28. Wald, R.M.: The thermodynamics of black holes, gr-qc/9912119

    Google Scholar 

  29. Wheeler, J.A., Ford, K.: Geons, black holes and quantum foam: a life in physics. W.W. Norton Company, Inc., New York (1998)

    MATH  Google Scholar 

  30. Zuse, K.: Rechnender Raum. Elektronische Datenverarbeitung 8, 336–344 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Markopoulou, F. (2012). The Computing Spacetime. In: Cooper, S.B., Dawar, A., Löwe, B. (eds) How the World Computes. CiE 2012. Lecture Notes in Computer Science, vol 7318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30870-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30870-3_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30869-7

  • Online ISBN: 978-3-642-30870-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics