Skip to main content
Log in

Strengthening Brady’s Paraconsistent 4-Valued Logic BN4 with Truth-Functional Modal Operators

  • Published:
Journal of Logic, Language and Information Aims and scope Submit manuscript

Abstract

Łukasiewicz presented two different analyses of modal notions by means of many-valued logics: (1) the linearly ordered systems Ł3,..., ,..., \(\hbox {L}_{\omega }\); (2) the 4-valued logic Ł he defined in the last years of his career. Unfortunately, all these systems contain “Łukasiewicz type (modal) paradoxes”. On the other hand, Brady’s 4-valued logic BN4 is the basic 4-valued bilattice logic. The aim of this paper is to show that BN4 can be strengthened with modal operators following Łukasiewicz’s strategy for defining truth-functional modal logics. The systems we define lack “Łukasiewicz type paradoxes”. Following Brady, we endow them with Belnap–Dunn type bivalent semantics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A. R., & Belnap, N. D., Jr. (1975). Entailment: The logic of relevance and necessity (Vol. I). Princeton: Princeton University Press.

  • Arieli, O., & Avron, A. (1996). Reasoning with logical bilattices. Journal of Logic, Language and Information, 5, 25–63.

    Article  Google Scholar 

  • Arieli, O., & Avron, A. (1998). The value of the four values. Artificial Intelligence, 102, 97–141.

    Article  Google Scholar 

  • Belnap, N. D. (1960). Entailment and relevance. The Journal of Symbolic Logic, 25, 388–389.

    Google Scholar 

  • Belnap, N. D. (1977a). How a computer should think. In G. Ryle (Ed.), Contemporary aspects of philosophy (pp. 30–55). Stocksfield: Orielv Press Ltd.

  • Belnap, N. D. (1977b). A useful four-valued logic. In J. M. Dunn & G. Epstein (Eds.), Modern uses of multiple-valued logic (pp. 8–37). Dordrecht: D. Reidel Publishing Co.

  • Béziau, J. (2011). A new four-valued approach to modal logic. Logique et Analyse, 54, 18–33.

    Google Scholar 

  • Brady, R. T. (1982). Completeness proofs for the systems RM3 and BN4. Logique et Analyse, 25, 9–32.

    Google Scholar 

  • Brady, R. T. (Ed.). (2003). Relevant logics and their rivals (Vol. II). Aldershot: Ashgate.

    Google Scholar 

  • Dunn, J. M. (1976). Intuitive semantics for first-degree entailments and ‘coupled trees’. Philosophical Studies, 29, 149–168.

    Article  Google Scholar 

  • Dunn, J. M. (2000). Partiality and its dual. Studia Logica, 65, 5–40.

    Article  Google Scholar 

  • Font, J. M., & Hajek, P. (2002). On Łukasiewicz four-valued modal logic. Studia Logica, 70(2), 157–182.

    Article  Google Scholar 

  • Font, J. M., & Rius, M. (2000). An abstract algebraic logic approach to tetravalent modal logics. Journal of Symbolic Logic, 65(2), 481–518.

    Article  Google Scholar 

  • Goble, L. (2006). Paraconsistent modal logic. Logique et Analyse, 193, 3–29.

    Google Scholar 

  • González, C. (2012). MaTest. http://ceguel.es/matest. Last access 06 June 2015.

  • Jung, A., & Rivieccio, U. (2013). Kripke semantics for modal bilattice logic (extended abstracts). In Proceedings of the 28th annual ACM/IEEE symposium on logic in computer science (pp. 438–447). IEEE Computer Society Press.

  • Łukasiewicz, J. (1920/1970). On three-valued logic. In L. Borkowski (Ed.), Jan ŁSelected works (pp. 87–88). Amsterdam: North-Holland Pub. Co.

  • Łukasiewicz, J. (1951). Aristotle’s syllogistic from the standpoint of modern formal logic. Oxford: Clarendon Press.

    Google Scholar 

  • Łukasiewicz, J. (1953). A system of modal logic. The Journal of Computing Systems, 1, 111–149.

    Google Scholar 

  • Łukasiewicz, J. (1970). Selected works. In L. Borkowski (Ed.). Amsterdam: North-Holland Pub. Co.

  • Méndez, J. M., & Robles, G. (2015). A strong and rich 4-valued modal logic without Łukasiewicz-type paradoxes. Logica Universalis, 9(4), 501–522.

    Article  Google Scholar 

  • Méndez, J. M., Robles, G., & Salto, F. (2015). An interpretation of Łukasiewicz’s 4-valued modal logic. Journal of Philosophical Logic,. doi:10.1007/s10992-015-9362-x.

    Google Scholar 

  • Meyer, R. K., Giambrone, S., & Brady, R. T. (1984). Where gamma fails. Studia Logica, 43, 247–256.

    Article  Google Scholar 

  • Minari, P. (Manuscript). A note on Łukasiewicz’s three-valued logic. http://www.philos.unifi.it/upload/sub/Materiali/Preprint/wajsberg

  • Odintsov, S. P., & Wansing, H. (2010). Modal logics with Belnapian truth values. Journal of Applied Non-classical Logics, 20, 279–301.

    Article  Google Scholar 

  • Priest, G. (2008). Many-valued modal logics: A simple approach. Review of Symbolic Logic, 1, 190–203.

    Google Scholar 

  • Routley, R., Meyer, R. K., Plumwood, V., & Brady, R. T. (1982). Relevant logics and their rivals (Vol. 1). Atascadero, CA: Ridgeview Publishing Co.

    Google Scholar 

  • Slaney, J. K. (2005). Relevant logic and paraconsistency. In L. Bertossi, A. Hunter, & T. Schaub (Eds.), Inconsistency Tolerance, Lecture Notes in Computer Science (Vol. 3300, pp. 270–293).

  • Slaney, J. K. (1987). Reduced models for relevant logics without WI. Notre Dame Journal of Formal Logic, 28, 395–407.

    Article  Google Scholar 

  • Tkaczyk, M. (2011). On axiomatization of Łukasiewicz’s four-valued modal logic. Logic and Logical Philosophy, 20(3), 215–232.

    Google Scholar 

Download references

Acknowledgments

Work supported by research project FFI2014-53919-P financed by the Spanish Ministry of Economy and Competitiveness. We sincerely thank an anonymous referee of the JoLLI for his (her) comments and suggestions on a previous draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Méndez.

Appendix

Appendix

1.1 Brady’s Original Axiomatization of BN4

Brady formulated BN4 with the following axioms, rules and definition.

Axioms:

Rules:

Definition:

$$\begin{aligned} \hbox {Disjunction. }A\vee B=_{\mathrm {df}}\lnot (\lnot A\wedge \lnot B) \end{aligned}$$

Let us label \(\mathrm{BN}4_{0}\) Brady’s original formulation. Then, we have:

Proposition 6.1

(\(\mathrm{BN}4_{0}\) and BN4 are deductively equivalent) The logic \(\mathrm{BN}4_{0}\) and BN4 (as defined in Definition 2.10) are deductively equivalent. That is, for \(A\in {\mathcal {F}}\), \(\vdash _{\mathrm {BN4}}A\) iff \( \vdash _{\mathrm {BN4}_{0}}A.\)

Proof

(a) If \(\vdash _{\mathrm {BN4}}A\), then \(\vdash _{\mathrm {BN4}_{0}}A\). It follows immediately from the completeness of \(\mathrm{BN}4_{0}\) w.r.t. MBN4-validity (cf. Corollary in p. 28 of Brady (1982); cf. Definition 2.7 above) since all axioms and rules of BN4 (as defined in Definition 2.10) hold in the matrix MBN4. (b) If \(\vdash _{\mathrm {BN4}_{0}}A\), then \(\vdash _{\mathrm {BN4}}A\): it suffices to prove that a11, a12 and Aff are provable in BN4 (Definition 2.10). a11 \( A\rightarrow [(A\rightarrow \lnot A)\rightarrow \lnot A]\) is immediate by A3 (\(A\rightarrow [(A\rightarrow B)\rightarrow B]\)); a12 \(A\vee [\lnot A\rightarrow (A\rightarrow B)]\) is easy by A14 (\(A\vee [\lnot (A\rightarrow B)\rightarrow B]\)), and T8 (\((\lnot A\rightarrow B)\rightarrow (\lnot B\rightarrow A)\)). Finally, Aff is immediate by A2 and the thesis \((B\rightarrow C)\rightarrow [(A\rightarrow B)\rightarrow (A\rightarrow C)]\) which is in its turn immediate by A2 and T5 (\( [A\rightarrow (B\rightarrow C)]\rightarrow [B\rightarrow (A\rightarrow C)]\)). \(\square \)

1.2 Łukasiewicz’s Matrix MŁ

Let us define our (version of) Łukasiewicz’s matrix MŁ (cf. Font and Hajek 2002; Tkaczyk 2011 and Méndez et al. 2015).

Definition 6.2

(The matrix MŁ) The proposition language consists of the connectives \(\rightarrow ,\lnot ,L\) . The matrix MŁ is the structure \(({\mathcal {V}},D,f_{\rightarrow },f_{\lnot },f_{L})\) where \({\mathcal {V}}=\{0,1,2,3\}\) and it is partially ordered as in Belnap–Dunn’s matrix MB4 (Definition 2.5), \(D=\{3\}\) and \(f_{\rightarrow },f_{\lnot }\) and \(f_{L}\) are defined according to the following tables:

figure m

The related notions of MŁ-interpretation, etc. are defined according to the general Definition 2.4.

1.3 Smiley’s Matrix MSm4

Smiley’s matrix MSm4 can be defined as follows (cf. Anderson and Belnap 1975, pp. 161–162).

Definition 6.3

(Smiley’s matrix MSm4) The propositional language consists of the connectives \(\wedge \), \(\vee \), \( \lnot \) and \(\rightarrow \). Smiley’s matrix MSm4 is the structure \((\mathcal { V},D,\) F) where (1) \({\mathcal {V}}\) and D are defined as in the matrix MŁ and F \(=\{f_{\wedge },f_{\vee },f_{\lnot },f_{\rightarrow }\}\) where \(f_{\wedge }\), \(f_{\vee }\) and \(f_{\lnot }\) are defined as in MB4 and \(f_{\rightarrow }\) according to the following table:

figure n

1.4 Anderson and Belnap’s Matrix \(\mathrm{M}_{0}\)

Anderson and Belnap’s \(\mathrm{M}_{0}\) can be defined as follows (cf. Belnap 1960; Anderson and Belnap 1975, §22.1.3).

Definition 6.4

(Anderson and Belnap’s matrix \(\mathrm{M}_{0}\)) The propositional language consists of the connectives \(\wedge \), \(\vee \), \(\lnot \) and \( \rightarrow \). Anderson and Belnap’s matrix \(\mathrm{M}_{0}\) is the structure \(( {\mathcal {V}},D,\) F) where (1) \({\mathcal {V}}=\{0,1,2,3,4,5,6,7\}\) , \(D=\{4,5,6,7\}\) and \(f_{\wedge },f_{\vee },f_{\lnot }\) and \(f_{\rightarrow }\) in F are defined according to the following truth tables:

figure o

The matrix \(\mathrm{M}_{0}\) is axiomatized in Brady (2003). Anderson and Belnap use \( -0,-1,-2,-3,+0,+1,+2\) and \(+3\) instead of 0, 1, 2, 3, 4, 5, 6 and 7, respectively.

1.5 The Basic Logic \(\mathrm{GBL}_{\supset }\) is BN4

As remarked in the introduction to this paper, the basic logic \(\mathrm{GBL}_{\supset }\) is the \(\{\rightarrow ,\wedge ,\vee ,\lnot \}\) fragment of the bilattice logic \(\mathrm{GBL}_{\supset }\) (cf. Arieli and Avron 1996). The “weak implication” \(\supset \) is defined as follows (cf. Arieli and Avron 1996, p. 22): \(x\supset y=_{\mathrm {df}}\left\{ \begin{array}{l} \text {t if }x\notin D \\ \text {y if }x\in D\end{array}\right\} \). So, the “weak implication” in Belnap–Dunn matrix MB4 (Definition 2.5) is interpreted according to the following table:

figure p

which satisfies all classical implicative tautologies. On the other hand, the “strong implication” (\( \rightarrow \)) is defined as follows: \(A\rightarrow B=_{\mathrm {df}}(A\supset B)\wedge (\lnot B\supset \lnot A)\), which gives us the following truth table for \(\rightarrow \):

figure q

that is, the conditional truth table of Brady’s BN4. Now, given that \(\supset \) is definable from the \(\{\rightarrow ,\vee \}\) fragment of GBL (Arieli and Avron 1996, Proposition 3.31). the \(\{\supset ,\wedge ,\vee ,\lnot \}\) fragment of \(\mathrm{GBL}_{\supset }\) is actually Brady’s logic BN4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, J.M., Robles, G. Strengthening Brady’s Paraconsistent 4-Valued Logic BN4 with Truth-Functional Modal Operators. J of Log Lang and Inf 25, 163–189 (2016). https://doi.org/10.1007/s10849-016-9237-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10849-016-9237-8

Keywords

Mathematics Subject Classification

Navigation