Skip to main content
Log in

Can stochastic physics be a complete theory of nature?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The prospects for a complete stochastic theory of microscopic phenomena are considered. The two traditional schools of stochastic physics, the diffusion process school and the zero-point electromagnetic field school, are reviewed. A completely relativistic theory, stochastic field theory, is proposed as an extension of the ideas of these two schools. Within the context of stochastic field theory we present the following new results: an elementary stochastization scheme which produces the zero-point electromagnetic field; a physical interpretation of the mathematical methods developed by Lukosz for calculating zero-point energies; a calculation of the first-order Lamb shift which generalizes that of Welton; a new setting for a finite-temperature theory; and comments on the bag model for quark confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kershaw,Phys. Rev. 136B, 1850 (1964).

    Google Scholar 

  2. E. Nelson,Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  3. L. de la Peña-Auerbach,Phys. Lett. 27A, 594 (1968).

    Google Scholar 

  4. L. de la Peña-Auerbach,J. Math. Phys. 10, 1620 (1969).

    Google Scholar 

  5. T. G. Dankel, Jr.,Arch. Rat. Mech. Analy. 37, 192 (1970).

    Google Scholar 

  6. L. de la Peña-Auerbach,J. Math. Phys. 12, 453 (1971).

    Google Scholar 

  7. J.-P. Caubet,C. R. Acad. Sci. 274, 1502 (1972).

    Google Scholar 

  8. L. de la Peña-Auerbach,Found. Phys. 5, 355 (1975).

    Google Scholar 

  9. P. Braffort and C. Tzara,C. R. Acad. Sci. 239, 157 (1954).

    Google Scholar 

  10. P. Braffort, M. Surdin, and A. Taroni,C. R. Acad. Sci. 261, 4339 (1965).

    Google Scholar 

  11. T. Marshall,Proc. Camb. Phil. Soc. 61, 537 (1965).

    Google Scholar 

  12. T. H. Boyer,Phys. Rev. D 11, 790 (1975).

    Google Scholar 

  13. M. Surdin,Ann. Inst. H. Poincaré 15, 203 (1971).

    Google Scholar 

  14. P. Claverie and S. Diner,Ann. Fond. L. de Broglie 1, 73 (1976).

    Google Scholar 

  15. J. L. Doob,Stochastic Processes (Wiley, New York, 1953).

    Google Scholar 

  16. I. M. Gel'fand and N. Ya. Vilenkin,Generalized Functions Vol. 4 (Academic Press, New York, 1964).

    Google Scholar 

  17. W. Lukosz,Z. Phys. 258, 99 (1973).

    Google Scholar 

  18. T. A. Welton,Phys. Rev. 74, 1157 (1948).

    Google Scholar 

  19. A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf,Phys. Rev. D 9, 3471 (1974).

    Google Scholar 

  20. A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn,Phys. Rev. D 10, 2599 (1974).

    Google Scholar 

  21. T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis,Phys. Rev. D 12, 2060 (1975).

    Google Scholar 

  22. K. Johnson and C. B. Thorn,Phys. Rev. D 13, 1934 (1976).

    Google Scholar 

  23. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  24. E. Nelson,J. Math. Phys. 5, 332 (1964).

    Google Scholar 

  25. C. DeWitt-Morette,Comm. Math. Phys. 28, 47 (1972);37, 63 (1974).

    Google Scholar 

  26. S. A. Albeverio and R. J. Hoegh-Krohn,Mathematical Theory of Feynman Path Integrals (Springer, Berlin, 1976).

    Google Scholar 

  27. H. B. G. Casimir,Proc. K. Ned. Akad. Wetensch. 51, 793 (1948).

    Google Scholar 

  28. H. B. G. Casimir and D. Polder,Phys. Rev. 73, 360 (1948).

    Google Scholar 

  29. A. Van Sifhout, Thesis, U. of Utrecht, Holland (1966).

    Google Scholar 

  30. S. Hunklinger, Dissertation, T. H. München, Germany (1969).

    Google Scholar 

  31. D. Tabor and R. H. S. Winterton,Proc. Roy. Soc. A 312, 435 (1969).

    Google Scholar 

  32. A. Shih, D. Raskin, and P. Kusch,Phys. Rev. A 9, 652 (1969).

    Google Scholar 

  33. J. N. Israelachvili and D. Tabor,Proc. Roy. Soc. A 331, 19 (1972).

    Google Scholar 

  34. A. Shih,Phys. Rev. A 9, 1507 (1974).

    Google Scholar 

  35. O. Theimer,Phys. Rev. D 4, 1598 (1971).

    Google Scholar 

  36. T. H. Boyer,Phys. Rev. 182, 1374 (1969).

    Google Scholar 

  37. G. H. Goedecke,Nuovo Cim. 28B, 225 (1975);30B, 108 (1975).

    Google Scholar 

  38. E. Santos,Nuovo Cim. 19B, 57 (1974).

    Google Scholar 

  39. L. de la Peña-Auerbach and A. M. Cetto,Rev. Mex. Fis. 25, 1 (1976).

    Google Scholar 

  40. W. L. Burke,Phys. Rev. A 2, 1501 (1970).

    Google Scholar 

  41. W. L. Burke,J. Math. Phys. 12, 401 (1971).

    Google Scholar 

  42. A. Richoz,Helv. Phys. Acta 49, 99 (1976).

    Google Scholar 

  43. J. G. Gilson,Proc. Camb. Phil. Soc. 64, 1061 (1968).

    Google Scholar 

  44. L. de la Peña-Auerbach and A. M. Cetto,J. Math. Phys. 18, 1612 (1977).

    Google Scholar 

  45. R. E. Collins,Found. Phys. 7, 475 (1977).

    Google Scholar 

  46. H. B. G. Casimir,Physica 19, 846 (1953).

    Google Scholar 

  47. T. H. Boyer,Phys. Rev. 174, 1764 (1968).

    Google Scholar 

  48. W. Lukosz,Physica 56, 109 (1971).

    Google Scholar 

  49. S. M. Moore, Complements to Nelson's Stochastic Mechanics, Uniandes preprint (January 1979).

  50. E. Nelson,J. Funct. Anal. 11, 211 (1972);12, 97, 211 (1973).

    Google Scholar 

  51. F. Guerra and P. Ruggiero,Phys. Rev. Lett. 31, 1022 (1972).

    Google Scholar 

  52. T. H. Yao,J. Math. Phys. 17, 241 (1976).

    Google Scholar 

  53. S. C. Lim,J. Phys. A 9, 1731 (1976).

    Google Scholar 

  54. T. W. Marshall,Izv. Vuz Fiz. 11, 34 (1968).

    Google Scholar 

  55. M. Gell-Mann,Phys. Rev. 125, 1067 (1962).

    Google Scholar 

  56. J. Fröhlich and K. Osterwalder,Helv. Phys. Acta 47, 781 (1975).

    Google Scholar 

  57. S. L. Adler and R. F. Dashen,Current Algebras (Benjamin, New York, 1968).

    Google Scholar 

  58. M. Gell-Mann,Phys. Lett. 8, 214 (1964).

    Google Scholar 

  59. S. Weinberg,Phys. Rev. Lett. 19, 1264 (1967).

    Google Scholar 

  60. R. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).

    Google Scholar 

  61. G. C. Hegerfeldt,Nuovo Cim. 25B, 538 (1975).

    Google Scholar 

  62. K. Osterwalder and R. Schrader,Comm. Math. Phys. 31, 83 (1973);42, 281 (1975).

    Google Scholar 

  63. S. M. Moore,Lett. Nuovo Cim. 23, 195 (1978).

    Google Scholar 

  64. D. A. Kirzhnits and A. D. Linde,Phys. Lett. 42B, 471 (1972).

    Google Scholar 

  65. L. Dolan and R. Jackiw,Phys. Rev. D 9, 3320 (1974).

    Google Scholar 

  66. S. Weinberg,Phys. Rev. D 9, 3357 (1974).

    Google Scholar 

  67. J. Fröhlich,Helv. Phys. Acta 48, 355 (1975).

    Google Scholar 

  68. R. L. Jaffe, private communication.

  69. R. Hagedorn and J. Ranft,Nucl. Phys. B 48, 157 (1972).

    Google Scholar 

  70. R. Jackiw,Rev. Mod. Phys. 49, 681 (1977).

    Google Scholar 

  71. C. Frederick,Phys. Rev. D 13, 3183 (1976).

    Google Scholar 

  72. S. Weinberg,Gravitation and Cosmology (Wiley, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research financed in part by Colciencias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.M. Can stochastic physics be a complete theory of nature?. Found Phys 9, 237–259 (1979). https://doi.org/10.1007/BF00715181

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00715181

Keywords

Navigation