Skip to main content

Implications of Model-Based Uncertainty: Scientific Responses and Philosophical Interpretations

  • Reference work entry
  • First Online:
Handbook of the Philosophy of Climate Change

Part of the book series: Handbooks in Philosophy ((HP))

  • 507 Accesses

Abstract

There are a multitude of sources of uncertainty in the science of climate change, many of which are related to the extensive use of climate models to answer research questions. This chapter, which complements Morrison and Lawrence (chapter “Understanding Model-Based Uncertainty in Climate Science,” this volume), examines how various sources of uncertainty in climate models – structural, parameter, scenario, and initial condition – contribute to uncertainty in the ability to project climate impacts and changes to extremes, understand equilibrium climate sensitivity and transient climate response, and identify the causal contributions of a changing climate to disastrous weather events (attribution). The second component of this chapter moves beyond descriptions of the consequences of uncertainty to discuss how scientists have sought to decrease and understand model-based uncertainties. Practices examined include the use of model ensembles in various forms (multi-model, large single model, and perturbed parameter), benchmarking, out-of-sample testing, and machine learning. Also explored are the philosophical discussions related to these practices, commenting on interpretations of model pluralisms, the epistemic opacity of machine learning, and the epistemic role of models in informing decisions related to adaptation and resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, G., Pitman, A., Gupta, H., Kowalczyk, E., & Wang, Y. (2007). Systematic bias in land surface models. Journal of Hydrometeorology, 8(5), 989–1001.

    Article  Google Scholar 

  • Briley, L. J., Rood, R. B., & Notaro, M. (2021). Large lakes in climate models: A Great Lakes case study on the usability of CMIP5. Journal of Great Lakes Research, 47(2), 405–418. https://doi.org/10.1016/j.jglr.2021.01.010

    Article  Google Scholar 

  • Castruccio, S., Hu, Z., Sanderson, B., Karspeck, A., & Hammerling, D. (2019). Reproducing internal variability with few ensemble runs. Journal of Climate, 32(24), 8511–8522. https://doi.org/10.1175/JCLI-D-19-0280.1

    Article  Google Scholar 

  • Christidis, N., Stott, P. A., Karoly, D. J., & Ciavarella, A. (2013). An attribution study of the heavy rainfall over eastern Australia in march 2012 [in “Explaining extreme events of 2012 from a climate perspective”]. Bulletin of the American Meteorological Society, 94(9), S58–S61.

    Google Scholar 

  • Cohn, T. A., & Lins, H. F. (2005). Nature’s style: Naturally trendy. Geophysical Research Letters, 32(23), 1–5.

    Google Scholar 

  • Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W. J., Mu, M., & Randerson, J. T. (2018). The international land model benchmarking (ILAMB) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10(11), 2731–2754. https://doi.org/10.1029/2018MS001354

    Article  Google Scholar 

  • Cox, P. M., Huntingford, C., & Williamson, M. S. (2018). Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 553(7688), 319–322. https://doi.org/10.1038/nature25450

    Article  Google Scholar 

  • Dagon, K., Sanderson, B. M., Fisher, R. A., & Lawrence, D. M. (2020). A machine learning approach to emulation and biophysical parameter estimation with the community land model, version 5. Advances in Statistical Climatology, Meteorology and Oceanography, 6(2), 223–244. https://doi.org/10.5194/ascmo-6-223-2020

    Article  Google Scholar 

  • Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., Fiore, A., Frankignoul, C., Fyfe, J. C., Horton, D. E., Kay, J. E., Knutti, R., Lovenduski, N. S., Marotzke, J., McKinnon, K. A., Minobe, S., Randerson, J., Screen, J. A., Simpson, I. R., & Ting, M. (2020). Insights from earth system model initial-condition large ensembles and future prospects. Nature Climate Change, 10(4), 277–286. https://doi.org/10.1038/s41558-020-0731-2

    Article  Google Scholar 

  • Dixon, K. W., Lanzante, J. R., Nath, M. J., Hayhoe, K., Stoner, A., Radhakrishnan, A., Balaji, V., & Gaitán, C. F. (2016). Evaluating the stationarity assumption in statistically downscaled climate projections: Is past performance an indicator of future results? Climatic Change, 135(3), 395–408. https://doi.org/10.1007/s10584-016-1598-0

    Article  Google Scholar 

  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Fasullo, J. T. (2020). Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the climate model assessment tool (CMATv1). Geoscientific Model Development, 13(8), 3627–3642. https://doi.org/10.5194/gmd-13-3627-2020

    Article  Google Scholar 

  • Gettelman, A., Hannay, C., Bacmeister, J. T., Neale, R. B., Pendergrass, A. G., Danabasoglu, G., Lamarque, J.-F., Fasullo, J. T., Bailey, D. A., Lawrence, D. M., & Mills, M. J. (2019). High climate sensitivity in the community earth system model version 2 (CESM2). Geophysical Research Letters, 46(14), 8329–8337. https://doi.org/10.1029/2019GL083978

    Article  Google Scholar 

  • Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Herger, N., Abramowitz, G., Knutti, R., Angélil, O., Lehmann, K., & Sanderson, B. M. (2018). Selecting a climate model subset to optimise key ensemble properties. Earth System Dynamics, 9(1), 135–151. https://doi.org/10.5194/esd-9-135-2018

    Article  Google Scholar 

  • Hoffman, F. M., Koven, C. D., Keppel-Aleks, G., Lawrence, D. M., Riley, W. J., Randerson, J. T., Ahlström, A., Abramowitz, G., Baldocchi, D. D., Best, M. J., Bond-Lamberty, B., De Kauwe, M. G., Denning, A. S., Desai, A. R., Eyring, V., Fisher, J. B., Fisher, R. A., Gleckler, P. J., Huang, M., et al. (2017). 2016 international land model benchmarking (ILAMB) workshop report. (DOE/SC-0186, 1330803; p. DOE/SC-0186, 1330803). https://doi.org/10.2172/1330803

    Book  Google Scholar 

  • Jebeile, J., & Barberousse, A. (2021). Model spread and progress in climate modelling. European Journal for Philosophy of Science, 11, 1–19.

    Article  Google Scholar 

  • Jebeile, J., & Crucifix, M. (2021). Value management and model pluralism in climate science. Studies in History and Philosophy of Science, 88, 120–127. https://doi.org/10.1016/j.shpsa.2021.06.004

    Article  Google Scholar 

  • Kawamleh, S. (2021). Can machines learn how clouds work? The epistemic implications of machine learning methods in climate science. Philosophy of Science, 88(5), 1008–1020. https://doi.org/10.1086/714877

    Article  Google Scholar 

  • King, A. D., Lewis, S. C., Perkins, S. E., Alexander, L. V., Donat, M. G., Karoly, D. J., & Black, M. T. (2013). Limited evidence of the anthropogenic influence on the 2011–12 extreme rainfall over Southeast Australia, in “Explaining extreme events of 2012 from a climate perspective”. Bulletin of the American Meteorological Society, 94(9), S55–S58.

    Google Scholar 

  • Knutson, T. R., & Ploshay, J. J. (2016). Detection of anthropogenic influence on a summertime heat stress index. Climatic Change, 138(1), 25–39. https://doi.org/10.1007/s10584-016-1708-z

    Article  Google Scholar 

  • Knutson, T. R., Sirutis, J. J., Vecchi, G. A., Garner, S., Zhao, M., Kim, H.-S., Bender, M., Tuleya, R. E., Held, I. M., & Villarini, G. (2013). Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. Journal of Climate, 26(17), 6591–6617. https://doi.org/10.1175/JCLI-D-12-00539.1

    Article  Google Scholar 

  • Knutti, R. (2010). The end of model democracy? Climatic Change, 102(3), 395–404.

    Article  Google Scholar 

  • Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., & Meehl, G. A. (2010). Challenges in combining projections from multiple climate models. Journal of Climate, 23(10), 2739–2758. https://doi.org/10.1175/2009JCLI3361.1

    Article  Google Scholar 

  • Knutti, R., Masson, D., & Gettelman, A. (2013). Climate model genealogy: Generation CMIP5 and how we got there: Climate model genealogy. Geophysical Research Letters, 40(6), 1194–1199. https://doi.org/10.1002/grl.50256

    Article  Google Scholar 

  • Knutti, R., Rugenstein, M. A. A., & Hegerl, G. C. (2017a). Beyond equilibrium climate sensitivity. Nature Geoscience, 10(10), 727–736. https://doi.org/10.1038/ngeo3017

    Article  Google Scholar 

  • Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., & Eyring, V. (2017b). A climate model projection weighting scheme accounting for performance and interdependence: Model projection weighting scheme. Geophysical Research Letters. https://doi.org/10.1002/2016GL072012

  • Lanzante, J. R., Dixon, K. W., Nath, M. J., Whitlock, C. E., & Adams-Smith, D. (2018). Some pitfalls in statistical downscaling of future climate. Bulletin of the American Meteorological Society, 99(4), 791–803. https://doi.org/10.1175/BAMS-D-17-0046.1

    Article  Google Scholar 

  • Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., Knutti, R., & Hawkins, E. (2020). Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 11(2), 491–508. https://doi.org/10.5194/esd-11-491-2020

    Article  Google Scholar 

  • Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model pluralism. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(3), 253–262.

    Article  Google Scholar 

  • Lloyd, E. A. (2009). Varieties of support and confirmation of climate models. Proceedings of the Aristotelian Society, Supplementary Volumes, 83, 213–232.

    Article  Google Scholar 

  • Lloyd, E. A. (2015). Model robustness as a confirmatory virtue: The case of climate science. Studies in History and Philosophy of Science Part A, 49, 58–68.

    Article  Google Scholar 

  • Lloyd, E. A., Bukovsky, M., & Mearns, L. O. (2020). An analysis of the disagreement about added value by regional climate models. Synthese, 198(12), 11645–11672. https://doi.org/10.1007/s11229-020-02821-x

    Article  Google Scholar 

  • Luo, Y. Q., Randerson, J. T., Abramowitz, G., Bacour, C., Blyth, E., Carvalhais, N., Ciais, P., Dalmonech, D., Fisher, J. B., Fisher, R., Friedlingstein, P., Hibbard, K., Hoffman, F., Huntzinger, D., Jones, C. D., Koven, C., Lawrence, D., Li, D. J., Mahecha, M., et al. (2012). A framework for benchmarking land models. Biogeosciences, 9(10), 3857–3874. https://doi.org/10.5194/bg-9-3857-2012

    Article  Google Scholar 

  • Masson, D., & Knutti, R. (2011). Climate model genealogy: Climate model genealogy. Geophysical Research Letters, 38(8). https://doi.org/10.1029/2011GL046864

  • Moncrieff, M. W. (2019). Toward a dynamical foundation for organized convection parameterization in GCMs. Geophysical Research Letters, 46(23), 14103–14108. https://doi.org/10.1029/2019GL085316

    Article  Google Scholar 

  • Moncrieff, M. W., Liu, C., & Bogenschutz, P. (2017). Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models. Journal of the Atmospheric Sciences, 74(5), 1363–1380. https://doi.org/10.1175/JAS-D-16-0166.1

    Article  Google Scholar 

  • Morrison, M. A. (2021). The models are alright: A socio-epistemic theory of the landscape of climate model development. Indiana University.

    Google Scholar 

  • Nijsse, F. J. M. M., Cox, P. M., & Williamson, M. S. (2020). Emergent constraints on transient climate response (TCR) and equilibrium climate sensitivity (ECS) from historical warming in CMIP5 and CMIP6 models. Earth System Dynamics, 11(3), 737–750. https://doi.org/10.5194/esd-11-737-2020

    Article  Google Scholar 

  • O’Gorman, P. A., & Dwyer, J. G. (2018). Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems, 10(10), 2548–2563. https://doi.org/10.1029/2018MS001351

    Article  Google Scholar 

  • O’Loughlin, R. (2021). Robustness reasoning in climate model comparisons. Studies in History and Philosophy of Science Part A, 85, 34–43. https://doi.org/10.1016/j.shpsa.2020.12.005

    Article  Google Scholar 

  • Pacchetti, M. B., Dessai, S., Bradley, S., & Stainforth, D. A. (2021). Assessing the quality of regional climate information. Bulletin of the American Meteorological Society, 102(3), E476–E491. https://doi.org/10.1175/BAMS-D-20-0008.1

    Article  Google Scholar 

  • Parker, W. S. (2006). Understanding pluralism in climate modeling. Foundations of Science, 11, 349–368.

    Article  Google Scholar 

  • Parker, W. S. (2009). Confirmation and adequacy-for-purpose in climate modelling. Proceedings of the Aristotelian Society, Supplementary Volumes, 83, 233–249.

    Article  Google Scholar 

  • Parker, W. S. (2011). When climate models agree: The significance of robust model predictions. Philosophy of Science, 78(4), 579–600.

    Article  Google Scholar 

  • Peterson, T. C., Stott, P. A., & Herring, S. (2013). Explaining extreme events of 2011 from a climate perspective. Bulletin of the American Meteorological Society, 93(7), 1041–1067. Chicago.

    Google Scholar 

  • Proistosescu, C., Battisti, D., Armour, K., & Roe, G. (2020). Equilibrium climate sensitivity controls uncertainty in regional climate change over the 21st century [preprint]. Physical Sciences and Mathematics. https://doi.org/10.31223/OSF.IO/V7NDP

  • Rasp, S., Pritchard, M. S., & Gentine, P. (2018). Deep learning to represent subgrid processes in climate models. Proceedings of the National Academy of Sciences, 115(39), 9684–9689. https://doi.org/10.1073/pnas.1810286115

    Article  Google Scholar 

  • Sanderson, B. M., Wehner, M., & Knutti, R. (2017). Skill and independence weighting for multi-model assessments. Geoscientific Model Development, 10(6), 2379–2395. https://doi.org/10.5194/gmd-10-2379-2017

    Article  Google Scholar 

  • Schupbach, J. N. (2018). Robustness analysis as explanatory reasoning. British Journal for the Philosophy of Science, 69, 275–300. https://doi.org/10.1093/bjps/axw008

  • Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., Heydt, A. S., Knutti, R., Mauritsen, T., et al. (2020). An assessment of Earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4). https://doi.org/10.1029/2019RG000678

  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., et al. (2013). IPCC, 2013: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.

    Google Scholar 

  • Swain, D. L., Singh, D., Touma, D., & Diffenbaugh, N. S. (2020). Attributing extreme events to climate change: A new frontier in a warming world. One Earth, 2(6), 522–527. https://doi.org/10.1016/j.oneear.2020.05.011

    Article  Google Scholar 

  • Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053–2075. https://doi.org/10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., & Knutti, R. (2020). Past warming trend con- strains future warming in CMIP6 models. Science Advances, 6(1), eaaz9549. https://doi.org/10.1126/sciadv.aaz9549

    Article  Google Scholar 

  • Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015). Attribution of climate extreme events. Nature Climate Change, 5(8), 725–730. https://doi.org/10.1038/nclimate2657

    Article  Google Scholar 

  • Walmsley, L. D. (2020). The strategy of model building in climate science. Synthese, 199(1–2), 745–765. https://doi.org/10.1007/s11229-020-02707-y

    Article  Google Scholar 

  • Weigel, A. P., Knutti, R., Liniger, M. A., & Appenzeller, C. (2010). Risks of model weighting in multimodel climate projections. Journal of Climate, 23(15), 4175–4191. https://doi.org/10.1175/2010JCLI3594.1

    Article  Google Scholar 

  • Weisberg, M. (2006). Robustness analysis. Philosophy of Science, 73, 730–742.

    Article  Google Scholar 

  • Wimsatt, W. C., & Wimsatt, W. K. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Harvard University Press.

    Book  Google Scholar 

  • Winsberg, E. (2021). What does robustness teach us in climate science: A re-appraisal. Synthese, 198(S21), 5099–5122. https://doi.org/10.1007/s11229-018-01997-7

    Article  Google Scholar 

  • Zhu, J., Otto-Bliesner, B. L., Brady, E. C., Gettelman, A., Bacmeister, J. T., Neale, R. B., Poulsen, C. J., Shaw, J. K., McGraw, Z. S., & Kay, J. E. (2022). LGM paleoclimate constraints inform cloud parameterizations and equilibrium climate sensitivity in CESM2. Journal of Advances in Modeling Earth Systems. https://doi.org/10.1029/2021MS002776

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Ainhorn Morrison .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morrison, M.A., Lawrence, P. (2023). Implications of Model-Based Uncertainty: Scientific Responses and Philosophical Interpretations. In: Pellegrino, G., Di Paola, M. (eds) Handbook of the Philosophy of Climate Change. Handbooks in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-031-07002-0_155

Download citation

Publish with us

Policies and ethics