Skip to main content
Log in

Stochastic Bohmian and Scaled Trajectories

  • Invited Review
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this review we deal with open (dissipative and stochastic) quantum systems within the Bohmian mechanics framework which has the advantage to provide a clear picture of quantum phenomena in terms of trajectories, originally in configuration space. The gradual decoherence process is studied from linear and nonlinear Schrödinger equations through Bohmian trajectories as well as by using the so-called quantum-classical transition differential equation through scaled trajectories. This transition is governed by a continuous parameter, the transition parameter, covering these two extreme open dynamical regimes. Thus, two sources of decoherence of different nature are going to be considered. Several examples will be presented and discussed in order to illustrate the corresponding theory behind each case, namely: the so-called Brownian–Bohmian motion leading to quantum diffusion coefficients, dissipative diffraction in time, dissipative tunnelling for a parabolic barrier under the presence of an electric field and stochastic early arrivals for the same type of barrier. In order to simplify the notations and physical discussion, the theoretical developments will be carried out in one dimension throughout all this wok. One of the main goals is to analyze the gradual decoherence process existing in these open dynamical regimes in terms of trajectories, leading to a more intuitive way of understanding the underlying physics in order to gain new insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fürth, R.: Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik. Z. Physik 81, 143–162 (1933)

    Article  ADS  MATH  Google Scholar 

  2. Fényes, I.: Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Physik 132, 81–106 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Weizel, W.: Ableitung der Quantentheorie aus einem klassischen, kausal determinierten Modell. Z. Physik 134, 264–285 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Weizel, W.: Ableitung der Quantentheorie aus einem klassischen Modell. II. Z. Physik 135, 270–273 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Weizel, W.: Ableitung der quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen Modell. Z. Physik 136, 582–604 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Physik 40, 322–326 (1927)

    Article  ADS  MATH  Google Scholar 

  8. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966)

    Article  ADS  Google Scholar 

  9. Kershaw, D.: Theory of hidden variables. Phys. Rev. 136, B1850 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  10. Comisar, G.G.: Brownian-motion model of nonrelativistic quantum mechanics. Phys. Rev. 138, B1332–B1337 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. de la Peña-Auberbach, L.: New formulation of stochastic theory and quantum mechanics. J. Math. Phys. 10, 1620–1630 (1969)

    Article  ADS  MATH  Google Scholar 

  12. Olavo, L.S.F.: Foundations of quantum mechanics: connection with stochastic processes. Phys. Rev. A 61, 052109 (2000)

    Article  ADS  Google Scholar 

  13. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172, 93–122 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bohm, D., Hiley, B.J.: The Undivided Universe. Routledge, London (1993)

    MATH  Google Scholar 

  15. Drezet, A.: Brownian motion in the pilot wave interpretation of de Broglie and relaxation to quantum equilibrium. Ann. Fond. L. de Broglie 43, 23 (2018)

    Google Scholar 

  16. Percival, I.: Quantum State Diffusion. Cambridge University Press, Cambrige (1998)

    MATH  Google Scholar 

  17. Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  18. Bauer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    Google Scholar 

  19. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, New York (2003)

    Book  MATH  Google Scholar 

  20. Schlosshauer, M.: Decoherence. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  21. Nassar, A.B., Miret-Artés, S.: Bohmian Mechanics. Open Quantum Systems and Continuous Measurements. Springer, Heidelberg (2017)

    Book  MATH  Google Scholar 

  22. Caldirola, P.: Forze non conservative nella meccanica quantistica. Nuovo Cim 18, 393–400 (1941)

    Article  ADS  MATH  Google Scholar 

  23. Kanai, E.: On the quantization of the dissipative systems. Prog. Theor. Phys. 3, 440–442 (1948)

    Article  ADS  Google Scholar 

  24. Bassalo, J.M.F., da Silva, D.G., Nassar, A.B., Cattani, M.S.D.: The Feynman’s propagators for non-linear Schrödinger equations. J. Adv. Math. Appl. 1, 1 (2012)

    Article  Google Scholar 

  25. Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. Bateman, H.: On dissipative systems and related variational principles. Phys. Rev. 38, 815–819 (1931)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Diósi, L., Halliwell, J.J.: Coupling classical and quantum variables using continuous quantum measurement theory. Phys. Rev. Lett. 81, 2846–2849 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kostin, M.D.: On the Schrödinger-Langevin equation. J. Chem. Phys. 57, 3589–3591 (1972)

    Article  ADS  Google Scholar 

  29. Schuch, D., Chung, K.-M., Hartmann, H.: Nonlinear Schrödinger-type field equation for the description of dissipative systems. I. Derivation of the nonlinear field equation and one-dimensional example. J. Math. Phys 24, 1652–1660 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Schuch, D.: Effective description of the dissipative interaction between simple model-systems and their environment. Int. J. Quantum Chem. 72, 537–547 (1999)

    Article  Google Scholar 

  31. Hasse, R.W.: On the quantum mechanical treatment of dissipative systems. J. Math. Phys. 16, 2005–2011 (1975)

    Article  ADS  Google Scholar 

  32. Albrecht, K.: A new class of Schrödinger operators for quantized friction. Phys. Lett. B 56, 127–129 (1975)

    Article  ADS  Google Scholar 

  33. Kostin, M.D.: Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 12, 145–151 (1975)

    Article  ADS  Google Scholar 

  34. Nassar, A.B.: Time dependent invariant associated to nonlinear Schrdinger-Langevin equations. J. Math. Phys. 27, 2949–2952 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Nassar, A.B.: Schrödinger Equation for An Extended Electron. Int. J. Theor. Phys. 46, 548–552 (2007)

    Article  MATH  Google Scholar 

  36. Nassar, A.B., Miret-Artés, S.: Dividing line between quantum and classical trajectories in a measurement problem: Bohmian time constant. Phys. Rev. Lett. 111, 150401 (2013)

    Article  ADS  Google Scholar 

  37. Chavanis, P.H.: Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos. Eur. Phys. J. Plus 132, 248 (2017)

    Article  Google Scholar 

  38. Nottale, L.: Scale Relativity and Fractal Space-Time. Imperial College Press, London (2011)

    Book  MATH  Google Scholar 

  39. Bargueño, P., Miret-Artés, S.: The generalized Schrödinger-Langevin equation. Ann. Phys. 346, 59–65 (2014)

    Article  ADS  MATH  Google Scholar 

  40. Vargas, A.F., Morales-Durán, N., Bargueño, P.: A Bohmian approach to the non-Markovian non-linear Schrödinger-Langevin equation. Ann. Phys. 356, 498–504 (2015)

    Article  ADS  MATH  Google Scholar 

  41. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  42. Sanz, A.S., Miret-Artés, S.: A Trajectory Description of Quantum Processes. Part I. Fundamentals. Lecture Notes in Physics, vol. 850 (2012)

  43. Sanz, A. S., Miret-Artés, S.: A Trajectory Description of Quantum Processes. Part II. Applications. Lecture Notes in Physics, vol. 831 (2014)

  44. Richardson, C.D., Schlagheck, P., Martin, J., Vandewalle, N., Bastin, T.: Nonlinear Schrödinger wave equation with linear quantum behavior. Phys. Rev. A 89, 032118 (2014)

    Article  ADS  Google Scholar 

  45. Chou, C.-C.: Trajectory description of the quantum-classical transition for wave packet interference. Ann. Phys. 371, 437–459 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Chou, C.-C.: Quantum-classical transition equation with complex trajectories. Int. J. Quant. Chem. 116, 1752–1762 (2016)

    Article  Google Scholar 

  47. Mousavi, S.V., Miret-Artés, S.: Dissipative tunnelling by means of scaled trajectories. Ann. Phys. 393, 76–92 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Mousavi, S.V., Miret-Artés, S.: Quantum-classical transition in dissipative systems through scaled trajectories. J. Phys. Commun. 2, 035029 (2018)

    Article  Google Scholar 

  49. Xiao-Feng, P., Yuan-Ping, F.: Quantum Mechanics in Nonlinear Systems. World Scientific, Hong Kong (2005)

    Book  MATH  Google Scholar 

  50. Schiller, R.: Quasi-classical theory of the nonspinning electron. Phys. Rev. 125, 1100–1108 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Pinney, E.: The nonlinear differential equation \(y^{\prime \prime }+p(x)y+cy^{-3}=0\). Proc. Am. Math. Soc. 1, 681 (1950)

    MathSciNet  MATH  Google Scholar 

  52. Katz, R., Gossiaux, P.B.: The Schrödinger-Langevin equation with and without thermal fluctuations. Ann. Phys. 368, 267–295 (2016)

    Article  ADS  MATH  Google Scholar 

  53. Miret-Artés, S.: Quantum surface diffusion in Bohmian mechanics. J. Phys. Commun. 2, 095020 (2018)

    Article  Google Scholar 

  54. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Dissipative quantum tunneling: quantum Langevin equation approach. Phys. Lett. A 128, 29–34 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  55. Papadopoulos, G.J.: Microwave-assisted tunnelling in the presence of dissipation. J. Phys. A 30, 5497–5510 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Konno, K., Nishida, M., Tanda, S., Hatakenaka, N.: The effect of dissipation on quantum transmission resonance. Phys. Lett. A 368, 442–449 (2007)

    Article  ADS  Google Scholar 

  57. Bhattacharya, S., Roy, S.: Weak value of dwell time for quantum dissipative spin-\(1/2\) systems. Phys. Rev. A 85, 062119 (2012)

    Article  ADS  Google Scholar 

  58. Bhattacharya, S., Roy, S.: Hartman effect and dissipative quantum systems. J. Math. Phys. 54, 052101 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Kelkar, N.G., Lozano Gomez, D., Patiño, E.J.: Time in dissipative tunneling: subtleties and applications. Ann. Phys. 382, 11–21 (2017)

    Article  ADS  Google Scholar 

  60. Pollak, E.: Transition path time distribution, tunneling times, friction, and uncertainty. Phys. Rev. Lett. 118, 070401 (2017)

    Article  ADS  Google Scholar 

  61. Baskoutas, S., Jannussis, A.: Quantum tunnelling effect for the inverted Caldirola-Kanai Hamiltonian. J. Phys. A 25, L1299–L1304 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  62. Tokieda, M., Hagino, K.: Quantum tunnelling effect for the inverted Caldirola-Kanai Hamiltonian. Phys. Rev. C 95, 054604 (2017)

    Article  ADS  Google Scholar 

  63. Razavy, M.: Classical and Quantum Dissipative Systems. Imperial College Press, London (2005)

    MATH  Google Scholar 

  64. Sanz, A.S., Martinez-Casado, R., Peñate-Rodriguez, H.C., Rojas-Lorenzo, G., Miret-Artés, S.: Dissipative Bohmian mechanics within the Caldirola-Kanai framework: a trajectory analysis of wave-packet dynamics in viscid media. Ann. Phys. 347, 1–20 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Mousavi, S.V., Miret-Artés, S.: Stochastic Bohmian mechanics within the Schrödinger-Langevin framework: a trajectory analysis of wave-packet dynamics in a fluctuative-dissipative medium. Eur. Phys. J. Plus 134, 311 (2019)

    Article  Google Scholar 

  66. Pathria, R.K.: Statistical Mechanics. Pergamon Press, Toronto (1972)

    MATH  Google Scholar 

  67. Mousavi, S.V., Miret-Artés, S.: On non-linear Schrödinger equations for open quantum systems. Eur. Phys. J. Plus 134, 431 (2019)

    Article  Google Scholar 

  68. Ballentine, L.E., Yang, Y., Zibin, J.P.: Inadequacy of Ehrenfest’s theorem to characterize the classical regime. Phys. Rev. A 50, 2854 (1994)

    Article  ADS  Google Scholar 

  69. Kobe, D.H.: Quantum power in de Broglie-Bohm theory. J. Phys. A 40, 5155–5162 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Rosen, N.: The relation between classical and quantum mechanics. Am. J. Phys. 32, 597–600 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  71. Allori, V., Dürr, D., Goldstein, S., Zhanhi, N.: Seven steps towards the classical world. J. Opt. B 4, S482–S488 (2002)

    Article  ADS  Google Scholar 

  72. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J.G.: Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    Article  ADS  Google Scholar 

  73. Zander, C., Plastino, A.R., Díaz-Alonso, J.: Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements. Ann. Phys. 362, 36–56 (2015)

    Article  ADS  MATH  Google Scholar 

  74. Mousavi, S.V.: Dissipative diffraction in time and early-arrival in continuous quantum-classical transition. Iranian J. Phys. Res. 21, 69–79 (2021)

    Google Scholar 

  75. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press Inc, Orlando (1980)

    MATH  Google Scholar 

  76. Papadopoulos, G.J.: Time-dependent quantum tunnelling via crossover processes. J. Phys. A 23, 935–947 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  77. Home, D., Majumdar, A.S., Matzkin, A.: Effects of a transient barrier on wavepacket traversal. J. Phys. A 45, 295301 (2012)

    Article  MATH  Google Scholar 

  78. Bandyopadhyay, S., Majumdar, A.S., Home, D.: Quantum-mechanical effects in a time-varying reflection barrier. Phys. Rev. A 65, 052718 (2002)

    Article  ADS  Google Scholar 

  79. Md Manirul, A., Majumdar, A.S., Home, D.: Understanding quantum superarrivals using the Bohmian model. Phys. Lett. A 304, 61–66 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Karami, H., Mousavi, S.V.: Time-dependent potential barriers and superarrivals. Can. J. Phys. 93, 413–417 (2015)

    Article  ADS  Google Scholar 

  81. Vanden-Eijnden, E., Ciccotti, G.: Second-order integrators for Langevin equations with holonomic constraints. Chem. Phys. Lett. 429, 310–316 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SVM acknowledges support from the University of Qom. SMA would like to thank Prof. A. B. Nassar for their short but fruitful collaboration on this subject. SMA acknowledges support from Fundación Humanismo y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Miret-Artés.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.V., Miret-Artés, S. Stochastic Bohmian and Scaled Trajectories. Found Phys 52, 78 (2022). https://doi.org/10.1007/s10701-022-00598-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00598-2

Keywords

Navigation