Skip to main content

Science and Ethics in the Exploration of Mars

  • Chapter
  • First Online:
The Human Factor in a Mission to Mars

Part of the book series: Space and Society ((SPSO))

  • 1357 Accesses

Abstract

The scientific exploration of Mars might yield results of extraordinary importance for our own planet, particularly the search for extant or fossil Martian life, which would make it possible to understand terrestrial life in a more profound way. This potential scientific treasure places on us an ethical obligation to minimize the disruption of the Martian environment until our scientific exploration has been greatly advanced. We also have ethical obligations to the human scientific explorers of Mars, ethical obligations that require a series of scientific investigations, e.g., about how the low Martian gravitation may affect those explorers’ physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although the emphasis has been mine all along, in making these remarks I find myself paraphrasing Harold P. Kline's many comments on earlier drafts of this essay.

  2. 2.

    The controversy spread to public arguments in the newspapers; see for example the front-page article “Life on Mars: Scientists ‘thrilled’ by prospect,” Seattle Times, August 7, 1996.

  3. 3.

    A good source for the state-of-the-art research on how gravity affects life can be found in the proceedings of the annual meetings of the IUPS Commission on Gravitational Physiology, published as supplements to The Physiologist (1982, 1984). See also the series of reports from Spacelab entitled “Life Sciences” (1984). For possible future experimentation see The Fabricant Report on Life Sciences Experiments for a Space Station (1983).

  4. 4.

    See the gravitational physiology supplements to The Physiologist cited above. Also see Experiments on Plants Grown in Space (1984). For an assessment and long-range planning of plant gravitational research see Plant Gravitational and Space Research (1984).

  5. 5.

    For this once-standard conclusion about the space environment, see Taylor (1997). For an influential experiment on cultures of embryonic lung cells, see Montgomery Jr. et al. (1977).

References

  • Bylinsky, G. (1981). Life in Darwin’s universe. Doubleday.

    Google Scholar 

  • Cairns-Smith, A. G. (2009). An approach to a blueprint for a primitive organism. In C. H. Waddington (Ed.), The origin of life: Towards a theoretical biology, 1 (pp. 57–66) Aldine Transaction. ISBN 978-0-202-36302-8.

    Google Scholar 

  • Carr, M. (2004). The proof is in: Ancient water on Mars. The Planetary Report, 24(3), 11.

    Google Scholar 

  • de Duve, C. (2002). Life evolving. Oxford University Press.

    Google Scholar 

  • de Duve, C. (2005). Singularities. Cambridge University Press.

    Google Scholar 

  • Dorminey, B. (2009). Without the Moon, would there be life on Earth? Scientific American, 21.

    Google Scholar 

  • Experiments on Plants Grown in Space. (1984). Annals of Botany, 54(Suppl. 3).

    Google Scholar 

  • Fabricant, J. D. (Ed.). (1983). The fabricant report on life sciences experiments for a space station. Galveston, Texas: University of Texas Medical Branch.

    Google Scholar 

  • Forget, F., Wordsworth, R., Millour, E., Madeleine, J.-B., Kerber, L., Leconte, J., et al. (2013). 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 222, 81–99.

    Article  ADS  Google Scholar 

  • Gravitational and Space Research (2013). 1(1).

    Google Scholar 

  • Halstead, T.W., & Pleasant, L.G. (1982). 1982 Space Biology Accomplishments. NASA Technical Memorandum 86224.

    Google Scholar 

  • IUPS Commission on Gravitational Physiology. (1982). The Physiologist, 25(Suppl.).

    Google Scholar 

  • IUPS Commission on Gravitational Physiology. (1984). The Physiologist, 27(Suppl.).

    Google Scholar 

  • Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, M., & Rettberg, P. (2008). Tardigrades survive exposure to space in low Earth orbit. Current Biology, 18(17), R729–R731.

    Article  Google Scholar 

  • Kerr, R.A. (1997). Putative martian microbes called microscopy artifacts. Science, 278(5344), 1706–1707.

    Article  Google Scholar 

  • Kochav, S., & Eyal-Giladi, H. (1971). Bilateral symmetry in chick embryo determination by gravity. Science, 171, 1027.

    Google Scholar 

  • Luef, B., Frischkorn, K. R., Wrighton, K. C., Holman, H. N., Birarda, G., Thomas, B. C., Singh, A., Williams, K. H., Siegerist, C. E., Tringe, S. G., Downing, K. H., Comolli, L. R., & Banfield J. F. (2015). Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Communications. https://doi.org/10.1038/ncomms7372.

  • Martel, J., & Young, J. D. E. (2008). Purported nanobacteria in human blood as calcium carbonate nanoparticles. Proceedings of the National Academy of Sciences, 105(14), 5549–5554.

    Article  ADS  Google Scholar 

  • McKay, D. S., Gibson Jr., E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., & Zare, R. N. (1996). Search for past life on Mars: Possible relic biogenic activity in martian meteorite AL84001. Science, 273, 924–929.

    Google Scholar 

  • Montgomery Jr. P. O., et al. (1977). The response of single human cells to zero-gravity. In R. S. Johnston & L. F. Dietlin (Eds.), Biomedical results from skylab, NASA SP-377, 221.

    Google Scholar 

  • Munevar, G. (2014). Space exploration and human survival. Space Policy, 30, 197–201.

    Article  ADS  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. (2018). Review and assessment of planetary protection policy development processes. Washington, DC: The National Academies Press. https://doi.org/10.17226/25172.

  • Neff, A. W., & Malacinski, G. M. (1982). Reversal of early pattern formation in inverted amphibian eggs. Proceedings of the Fourth Annual Meeting of the IUPS Commission on Gravitational Physiology. The Physiologist, 25(Suppl.), 119.

    Google Scholar 

  • Orosei, R., Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Di Paolo, F., Flamini, E., Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, G., Nenna, C., Noschese, R., Restano, M., & Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. Science, 361(6401), 490–493.

    Google Scholar 

  • Plant Gravitational and Space Research. (1984). Report of a workshop held April 30–May 2, 1984 in Rosslyn. Virginia: Publication of the American Society of Plant Physiology.

    Google Scholar 

  • Rambout, P. C. (1981). The Human Element. In A meeting with the universe: Science discoveries from the space program. NASA, 142.

    Google Scholar 

  • Reports, Spacelab. (1984). Life sciences. Science, 225, 205–234.

    Article  Google Scholar 

  • Science. (2007). Special section: Mars reconnaissance orbiter. Vol. 317, 1705–1719.

    Google Scholar 

  • Siegel, S. M. (1968). Experimental Biology of ammonia-rich environments: Optical and isotopic evidence for vital activity in pennicillium in liquid ammonia-glycerol media at −40 C. Proceedings of the National Academy of Sciences, 60(2), 505.

    Article  ADS  MathSciNet  Google Scholar 

  • Siegel, S. M. (1970). Experimental biology of extreme environments and its significance for space bioscience, 1 and 2. Spaceflight, 12(128–130), 256–299.

    Google Scholar 

  • Siegel, S. M., & Spettel, T. W. (1977). Life and the outer planets: II. Enzyme activity in ammonia-water systems and other exotic media at various temperatures. Life Science and Space Research, 15, 76.

    Google Scholar 

  • Siegel, B. Z., & Siegel, S. M. (1980). Further studies on the environmental capabilities of fungi: Interactions of salinity, ultraviolet irradiation, and temperature in penicillium. In R. Holmquist (Ed.), Gospar Life Sciences and Space Research, Vol. 8. Pergamos Press, 59.

    Google Scholar 

  • Squyres, S. (2009). Quoted in Space.com. https://www.space.com/6972-steve-squyres-robot-guy-humans-mars.html.

  • Taylor, G. R. (1997). Cell biology experiments conducted in space. BioScience, 27, 102.

    Article  Google Scholar 

  • Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A., & Bilski, K. (1980). The astronomical theory of climatic changes of Mars. Icarus, 44, 552–607.

    Article  ADS  Google Scholar 

  • Yin, A. (2012). Structural analysis of the valles marineris fault zone: Possible evidence for large-scale strike-slip faulting on Mars. Lithosphere, 4(4), 286–330.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Munévar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munévar, G. (2019). Science and Ethics in the Exploration of Mars. In: Szocik, K. (eds) The Human Factor in a Mission to Mars. Space and Society. Springer, Cham. https://doi.org/10.1007/978-3-030-02059-0_11

Download citation

Publish with us

Policies and ethics