Skip to main content

Hilbert’s Program: Incompleteness Theorems vs. Partial Realizations

  • Chapter
Philosophical Logic in Poland

Part of the book series: Synthese Library ((SYLI,volume 228))

Abstract

Mathematics on the turn of the 19th century was characterized by the intense development on the one hand and by the appearance of some difficulties in its foundations on the other. Main controversy centured around the problem of the legitimacy of abstract objects. The works of K. Weierstrass have contributed to the clarification of the role of the infinite in calculus. Set theory founded and developed by G. Cantor promised to mathematics new heights of generality, clarity and rigor. Unfortunately paradoxes appeared. Some of them were known already to Cantor (e.g. the paradox of the set of all ordinals and the paradox of the set of all setsl) and they could be removed by appropriate modifications of set theory (cf. Cantor’s distinction between absolut unendliche or inkonsistente Vielheiten and konsistente Vielheiten,i.e. between classes and sets2). Frege’s attempt to realize the idea of the reduction of mathematics to logic (which was in fact a continuation of the idea of the arithmetization of analysis developed among others by Weierstrass) led to a really embarrasing contradiction discovered in Frege’s system by B. Russell and known today as Russell’s antinomy or as the antinomy of non-reflexive classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Ackermann, W.: 1924–1925, ‘Begründung des tedium non datur mittels der Hilbertschen Theorie der Widerspruchsfreiheit’, Math. Annalen 93, 1–36.

    Google Scholar 

  • Ackermann, W.: 1940, ‘Zur Widerspruchsfreiheit der Zahlentheorie’, Math. Annalen 117, 162–194.

    Article  MathSciNet  Google Scholar 

  • Apt, K. R. and Marek, W.: 1974, ‘Second Order Arithmetic and Related Topics’, Annals of Math. Logic 6, 177–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Arai, T.: 1990, ‘Derivability Conditions on Rosser’s Provability Predicates’, Notre Dame Journal of Formal Logic (to appear).

    Google Scholar 

  • Bernays, P.: 1967, ‘Hilbert David’. In: Edwards, P. (Ed.) Encyclopedia of Philosophy, vol. 3, Macmillan and Free Press, New York, pp. 496–504.

    Google Scholar 

  • Bernays, P.: 1970, ‘On the Original Gentzen Consistency Proof for Number Theory’. In: Myhill, J. et al. (Eds.) Intuitionism and Proof Theory, North-Holland Publ. Comp., Amsterdam, pp. 409–417.

    Google Scholar 

  • Cantor, Georg: 1932, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts mit erlaeuternden Anmerkungen sowie mit Ergaenzungen aus dem Briefwechsel Cantor-Dedekind, Hrsg. E. Zermelo, Verlag von Julius Springer, Berlin; reprinted by Springer-Verlag, Berlin-Heidelberg-New York 1980.

    Google Scholar 

  • Detlefsen, M.: 1979, ‘On Interpreting Gödel’s Second Theorem’, Journal of Philosophical Logic 8, 297–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Detlefsen, Michael: 1986, Hilbert’s Program. An Essay on Mathematical Instrumentalism, D. Reidel Publ. Comp., Dordrecht-Boston-Lancaster-Tokyo.

    Google Scholar 

  • Detlefsen, M.: 1990, ‘On the Alleged Refutation of Hilbert’s Program Using Gödel’s First Incompleteness Theorem’, Journal of Philosophical Logic 19, 343–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Drake, F.R.: 1989, ‘On the Foundations of Mathematics in 1987’. In: Ebbinghaus, H.-D. et al. (Eds.) Logic Colloquium ‘87, Elsevier Science Publishers, Amsterdam, pp. 11–25. Feferman, S.: 1960, ‘Arithmetization of Metamathematics in a General Setting’, Fundamenta Mathematicae 49, 35–92.

    Google Scholar 

  • Feferman, S.: 1964–1968, S.: 1964–1968, ‘Systems of Predicative Analysis’, Part I: Journal of Symbolic Logic 29, (1964), 1–30; part II: Journal of Symbolic Logic 33, (1968), 193–220.

    Google Scholar 

  • Feferman, S.: 1988, ‘Hilbert’s Program Revisited: Proof-Theoretical and Foundational Reductions’, Journal of Symbolic Logic 53, 364–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman, H.: 1975, ‘Some Subsystems of Second Order Arithmetic and Their Use’, Proceedings of the International Congress of Mathematicians, Vancouver 1974, vol. 1, Canadian Mathematical Congress, pp. 235–242.

    Google Scholar 

  • Friedman, H.: 1977, personal communication to L. Harrington.

    Google Scholar 

  • Friedman, H.: 1981, ‘On the Necessary Use of Abstract Set Theory’, Advances in Mathematics 41, 209–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Gentzen, G.: 1936, ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’, Math. Annalen 112, 493–565

    Article  MathSciNet  Google Scholar 

  • Gentzen, G.: 1938, ‘Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie’, Forschung zur Logik und zur Grundlegung der exakten Wissenschaften, New Series 4, 19–44.

    Google Scholar 

  • Gentzen, G.: 1969, ‘On the Relation Between Intuitionistic and Classical Arithmetic’. In: Szabo, M. E. (Ed.) The Collected Papers of Gerhard Gentzen, North-Holland Publ. Comp., Amsterdam, pp. 53–67.

    Google Scholar 

  • Gentzen, G.: 1974, ‘Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie’, Archiv fuer math. Logik und Grundlagenforschungen 16, 97–112. English translation in Szabo, M. E. (Ed.), The Collected Papers of Gerhard Gentzen, North-Holland Publ. Comp., Amsterdam 1969.

    Google Scholar 

  • Gödel, K.: 1931, ‘Über formal unentscheidbare Sätze der ‘Principia Mathematica’ und verwandter Systeme. I’, Monatshefte fuer Mathematik und Physik 38, 173–198.

    Article  Google Scholar 

  • Gödel, K.: 1933, ‘Zur intuitionistischen Arithmetik und Zahlentheorie’, Ergebnisse eines Mathematischen Kolloquiums 4, 34–38.

    Google Scholar 

  • Gödel, K.: 1946, ‘Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics, 1–4’. First published in Davis, M. (Ed.) The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions, Raven Press, Hewlett, N.Y., pp. 84–88.

    Google Scholar 

  • Gödel, K.: 1958, ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’, Dialectica 12, 280–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Goodstein, R. L.: 1944, ‘On the Restriced Ordinal Theorem’, Journal of Symbolic Logic 9, 33–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Guaspari, D. and Solovay, R.: 1974, ‘Rosser Sentences’, Annals of Mathematical Logic 16, 81–99.

    Article  MathSciNet  Google Scholar 

  • Hilbert, D.: 1901, D.: 1901, ‘Mathematische Probleme’, Archiv der Mathematik und Physik 1, 4l-63 and 213–237. Reprinted in Hilbert, D. Gesammelte Abhandlungen, Berlin 1935.

    Google Scholar 

  • Hilbert, D.: 1926, ‘Über das Unendliche’, Math. Annalen 95, 161–190. English translation: ‘On the Infinite’, in: van Heijenoort, J. (Ed.) From Frege to Goedel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967, pp. 367–392.

    Google Scholar 

  • Hilbert, D.: 1927, ‘Die Grundlagen der Mathematik’, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Universitaet 6, 65–85. Reprinted in Hilbert, D. Grundlagen der Geometrie, 7th edition, Leipzig 1930. English translation: ‘The Foundations of Mathematics’, in van Heijenoort, J. (Ed.) From Frege to Goedel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967, pp. 464–479.

    Google Scholar 

  • Hilbert, D. and Bernays, R: 1934–1939, Grundlagen der Mathematik, Bd.I 1934, Bd.II 1939, Springer-Verlag, Berlin.

    Google Scholar 

  • Jeroslov, R.: 1975, ‘Experimental Logics and OZ-Theories’, Journal of Philosophical Logic 4, 253–267.

    MathSciNet  Google Scholar 

  • Kirby, L. and Paris, J.: 1977, ‘Initial Segments of Models of Peano’s Axioms’. In Lachlan, A., Srebrny, M., and Zarach, A. (Eds.) Set Theory and Hierarchy Theory V (Bierutowice, Poland, 1976), LNM 619, Springer-Verlag, Berlin-Heidelberg-New York, pp. 211–226.

    Chapter  Google Scholar 

  • Kirby, L. and Paris, J.: 1982, ‘Accessible Independence Results for Peano Arithmetic’, Bull. London Math. Soc. 14, 285–293.

    Article  MathSciNet  MATH  Google Scholar 

  • Kitcher, Ph.: 1976, ‘Hilbert’s Epistemology’, Philosophy of Science 43, 99–115.

    Article  MathSciNet  Google Scholar 

  • Kreisel, G.: 1958, ‘Hilbert’s Programme’, Dialectica 12, 346–372. Revised, with Postscript in Benacerraf, P. and Putnam, H. (Eds.) Philosophy of Mathematics, Englewood Cliffs, New Jersey, Prentice-Hall 1964, pp. 157–180.

    Google Scholar 

  • Kreisel, G.: 1968, ‘A Survey of Proof Theory’, Journal of Symbolic Logic 33, 321–388.

    Article  MathSciNet  MATH  Google Scholar 

  • Kreisel, G.: 1976, ‘What Have We Learned from Hilbert’s Second Problem?’. In Browder, F. (Ed.) Mathematical Developments Arising from Hilbert Problems, Proceedings of the Symposia in Pure Mathematics 28, Providence, pp. 93–130.

    Google Scholar 

  • Kreisel, G. and Takeuti, G.: 1974, ‘Formally Self-Referential Propositions for Cut-Free Analysis and Related Systems’, Dissertationes Mathematicae 118, 4–50.

    MathSciNet  Google Scholar 

  • Löb, M. H.: 1955, ‘Solution of a Problem of Leon Henkin’, Journal of Symbolic Logic 20, 115–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Murawski, R.: 1976–1977, ‘On Expandability of Models of Peano Arithmetic I-III’, Studia Logica 35, (1976), 409–419; 35, (1976), 421–431; 36 (1977), 181–188.

    Google Scholar 

  • Murawski, R.: 1984a, ‘Expandability of Models of Arithmetic’. In: Wechsung, G. (Ed.) Proceedings of Frege Conference 1984, Akademie-Verlag, Berlin, pp. 87–93.

    Google Scholar 

  • Murawski, R.: 1984b, ‘G. Cantora filozofia teorii mnogogci’ (G. Cantor’s philosophy of set theory), Studia Filozoficzne 11–12, 75–88.

    Google Scholar 

  • Murawski, R.: 1987, ‘Generalizations and Strengthenings of Gödel’s Incompleteness Theorem’. In: Srzednicki, J. (Ed.) Initiatives in Logic, Martinus Nijhof Publishers, Dordrecht-BostonLancaster, pp. 84–100.

    Chapter  Google Scholar 

  • Paris, J.: 1978, ‘some Independence Results for Peano Arithmetic’, Journal of Symbolic Logic 43, 725–731.

    Article  MathSciNet  MATH  Google Scholar 

  • Paris, J. and Harrington, L.: 1977, ‘A Mathematical Incompleteness in Peano Arithmetic’. In Barwise, J. (Ed.) Handbook of Mathematical Logic, North-Holland Pubi. Comp., Amsterdam, pp. 1133–1142.

    Google Scholar 

  • Peckhaus, Volker: 1990, Hilbertprogramm and Kritische Philosophie. Das Goettinger Modell interdisziplinaerer Zusammenarbeit zwischen Mathematik and Philosophie, Vandenhoeck & Ruprecht, Göttingen.

    MATH  Google Scholar 

  • Prawitz, D.: 1981, ‘Philosophical Aspects of Proof Theory’. In: Flgistad, G. (Ed.) Contemporary Philosophy. A New Survey, Martinus Nijhoff Publishers, The Hague-Boston-London, pp. 235–277.

    Google Scholar 

  • Ramsey, F. R: 1929, ‘On a Problem of Formal Logic’, Proc. London Math. Soc. (2) 30, 264–286.

    Google Scholar 

  • Reid, Constance: 1970, Hilbert, Springer-Verlag, Berlin-Heidelberg-New York.

    MATH  Google Scholar 

  • Resnik, M. D.: 1974, ‘On the Philosophical Significance of Consistency Proofs’, Journal of Philosophical Logic 3, 133–147.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosser, J. B.: 1936, ‘Extensions of Some Theorems of Gödel and Church’, Journal of Symbolic Logic 1, 87–91.

    Article  MATH  Google Scholar 

  • Schütte, Kurt: 1977, Proof Theory, Springer-Verlag, Berlin-Heidelberg-New York.

    Book  MATH  Google Scholar 

  • Sieg, W.: 1985, ‘Fragments of Arithmetic’, Annals of Pure and Applied Logic 28, 33–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Sieg, W.: 1988, ‘Hilbert’s Program Sixty Years Later’, Journal of Symbolic Logic 53, 338–348.

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson, S. G.: 1985a, ‘Friedman’s Research on Subsystems of Second Order Arithmetic’. In Harrington, L. et al. (Eds.), Harvey Friedman’s Research in the Foundations of Mathematics, North-Holland Publ. Comp., Amsterdam, pp. 137–159.

    Google Scholar 

  • Simpson, S. G.: 1985b, ‘Reverse Mathematics’, Proc. of Symposia in Pure Mathematics 42, 461–471.

    Article  Google Scholar 

  • Simpson, S. G.: 1987, ‘subsystems of Z2 and Reverse Mathematics’, Appendix to Takeuti, G. Proof Theory, North-Holland Publ. Comp., Amsterdam 1987, pp. 432–446.

    Google Scholar 

  • Simpson, S. G.: 1988a, ‘Partial Realizations of Hilbert’s Program’, Journal of Symbolic Logic 53, 349–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson, S. G.: 1988b, ‘Ordinal Numbers and the Hilbert’s Basis Theorem’, Journal of Symbolic Logic 53, 961–974.

    Article  MathSciNet  MATH  Google Scholar 

  • Simpson, Stephen G.: Subsystems of Second Order Arithmetic (to appear).

    Google Scholar 

  • Smorytiski, Craig: 1977, ‘The Incompleteness Theorems’. In Barwise, J. (Ed.) Handbook of Mathematical Logic, North-Holland Publ. Comp., Amsterdam, pp. 821–865.

    Google Scholar 

  • Smorytíski, Craig: 1981, ‘Fifty Years of Self-Reference in Arithmetic’, Notre Dame Journal of Formal Logic 22, 357–374.

    Article  MathSciNet  Google Scholar 

  • Smoryßski, Craig: 1985, Self-Reference and Modal Logic, Springer-Verlag, New York-BerlinHeidelberg-Tokyo.

    Book  Google Scholar 

  • Smoryfiski, C.: 1988, ‘Hilbert’s Programme’, CWI Quarterly 1, 3–59.

    Google Scholar 

  • Tait, W. W.: 1981, ‘Finitism’, Journal of Philosophy 78, 524–546.

    Article  Google Scholar 

  • Takeuti, Gaisi: 1987, Proof Theory, North-Holland Publ. Comp., Amsterdam. van Heijenoort, J. (ed.): 1967, From Frege to Goedel: A Source Book in Mathematical Logic, 1879–1931, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Visser, A.: 1989, ‘Peano’s Smart Children: A Provability Logical Study of Systems with Built-In Consistency’, Notre Dame Journal of Formal Logic 30, 161–196.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murawski, R. (1994). Hilbert’s Program: Incompleteness Theorems vs. Partial Realizations. In: Woleński, J. (eds) Philosophical Logic in Poland. Synthese Library, vol 228. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8273-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8273-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4276-7

  • Online ISBN: 978-94-015-8273-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics