Skip to main content
Log in

After the origin of life

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Summary

As to the primary morphogenesis which occurred after the origin of life, two conditions are considered.

  1. (a)

    It must be a non-specific pattern.

  2. (b)

    It must be one of the simplest patterns.

The above conditions are satisfied by the morphogenetic polarity. Actually, the simplest polar pattern is divided into two classes. The first of these is represented by a regional protrusion of the surface of a sphere (Fig. 1B), and the second by a regional inversion (Fig. 1C). That means that the first morphogenesis might take place towards two directions: regional protrusion and regional inversion of the globular organism. Both of them might be conditioned by the appearance of protoplasmic polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  • Allman, J. A. (1864). Report of the present state of our knowledge of the reproductive system in the Hydroida. - Rep. 33rd Meeting Brit. Assoc. 1864.

  • Aristotle (1949). De Partibus Animalium. (Transl. by W. Ogle) - Oxford.

  • Bernal, J. D. (1951). The physical basis of life. - London, Routledge & K. Paul, 80 p.

    Google Scholar 

  • Bonner, J. T. (1952). Morphogenesis: an essay on development. - Princeton, Princeton Univ. Press; London, Oxford Univ. Press; vi + 296 p.

    Google Scholar 

  • Bünning, E. (1952). Morphogenesis in plants. - Surv. biol. Progr. II, p. 105–140.

    Google Scholar 

  • — (1957). Polarität und inäquale Teilung des pflanzlichen Protoplasten. - In: L. V. Heilbrunn & F. Weber, Hrsg., Protoplasmatologia. Handbuch der Protoplasmafor-schung. Bnd VIII, Lief. 9a, iv+86 p. - Wien, Springer.

    Google Scholar 

  • Bütschli, O. (1910). Vorlesungen über vergleichende Anatomie. - Leipzig.

  • Cannon, H. G. (1956). An essay on evolution and modern genetics. - J. Linn. Soc. (Zool.) XLIII, p. 1–17.

    Google Scholar 

  • Child, C. M. (1915). Individuality in organisms. - Chicago.

  • — (1923). Physiological polarity and symmetry in relation to heredity. - Genetics VIII, p. 336–354.

    Google Scholar 

  • Conklin, E. G. (1917). Effects of centrifugal force on the structure and development of the eggs ofCrepidula. - J. exp. Zool. XXII, p. 311–420.

    Google Scholar 

  • Danielli, J. F. (1958). Studies of inheritance in Amoebae by the technique of nuclear transfer. - Proc. roy. Soc., Ser. B, CXLVIII, p. 321–331.

    Google Scholar 

  • Dürken, B. (1936). Entwicklungsbiologie und Ganzheit. Ein Beitrag zur Neugestaltung des Weltbildes. - Leipzig & Berlin, Teubner, vi + 207 p.

    Google Scholar 

  • Goethe, W.von (1827). Erläuterung zu dem aphoristischen Aufsatz „Die Natur“. Brief von Goethe an den Kanzler von Müller.

  • Gurwitsch, A. (1922). Über den Begriff des embryonalen Feldes. - Arch. EntwMech. Org. LI, p. 383–415.

    Google Scholar 

  • — (1927). Weiterbildung und Verallgemeinerung des Feldbegriffes. - Roux Arch. EntwMech. Organ. CXII, Festschrift Driesch II, p. 433–454.

    Google Scholar 

  • Haldane, J. B. S. (1931). The philosophical basis of biology. - London, Hodder & Stoughton, x+169 p.

    Google Scholar 

  • Hämmerling, J. (1934). Über formbildende Substanzen beiAcetabularia mediterranea, ihre räumliche und zeitliche Verteilung und ihre Herkunft. - Arch. EntwMech. Org. CXXXI, p. 1–81.

    Google Scholar 

  • Harrison, R. G. (1933). Some difficulties of the determination problem. - Amer. Nat. LXVII, p. 306–321.

    Google Scholar 

  • Kathariner, L. (1901). Über die bedingte Unabhängigkeit der Entwicklung des polar differenzierten Eies von der Schwerkraft. - Arch. EntwMech. Org. XII, p. 597–609.

    Google Scholar 

  • Khessin, R. (1957). Cell structure and protein synthesis. - Rep. Int. Symp. Origin of Life, Moscow, p. 260–264.

  • Lewin, K. (1920). Die Verwandtschaftsbegriffe in Biologie und Physik und die Darstellung vollständiger Stammbäume. - Berlin, Bornträger, viii + 35 p.

    Google Scholar 

  • Lillie, F. R. (1902). Differentiation without cleavage in the egg of the annelidChaetoperus pergamentaceus. - Arch. EntwMech. Org. XIV, p. 477–499.

    Google Scholar 

  • lubosch, W. (1920). Das Problem der tierischen Genealogie, nebst einer Erörterung des genealogischen Zusammenhanges der Steinheimer Schnecken. - Arch. mikr. Anat. (Festschrift für O. Hertwig).

  • Mitchell, P. (1957). The origin of life and the formation and organization functions of natural membranes. - Rep. Int. Symp. Origin of Life, Moscow, p. 229–234.

  • Mitchson, J. M. (1952). Cell membranes and cell division. - Symp. Soc. exp. Biol. VI, p. 105–127.

    Google Scholar 

  • Mosebach, G. (1943). Die Polarisierung derEquisetum-Spore durch Licht. - Planta XXXIII, p. 340–387.

    Google Scholar 

  • Motomura, I. (1949). Artificial alteration of the embryonic axis in the centrifuged eggs of sea urchins. - Sci. Rep. Tôhoku Univ. 4th Ser. XVIII, p. 117–125.

    Google Scholar 

  • Naef, A. (1919). Idealistische Morphologie und Phylogenetik. - Jena, G. Fischer, vi+77 p.

    Google Scholar 

  • Nakazawa, S. (1956). Developmental mechanics of Fucaceous algae: 1. The pre-existent polarity inCoccophora eggs. - Sci. Rep. Tôhoku Univ. 4th Ser. XXII, p. 175–179.

    Google Scholar 

  • — (1957).Do VI. A unified theory on the polarity determination inCoccophora, Fucus, andSargassum eggs. - Sci. Rep. Tôhoku Univ. 4th Ser. XXIII, p. 119–130.

    Google Scholar 

  • - (1958). Protoplasmic polarity as a groundwork for genie actions. - Protoplasma L, p. 208–211.

  • — (1960a). Morphogenesis of the fern protenema III. - Phyton XIV, p. 37–41.

    Google Scholar 

  • — (1960b). Nature of the protoplasmic polarity. - Protoplasma LII, p. 274–294.

    Google Scholar 

  • — (1961). Dynamics of morphogenetic fields. - Protoplasma LIII, p. 76–80.

    Google Scholar 

  • — &A. Tsusaka (1959a). Appearance of metallophilic cytoplasm as a prepattern to the differentiation or rhizoid in fern protonema. - Cytologia XXIV, p. 378–388.

    Google Scholar 

  • — (1959b). Special cytoplasm detectable in fern rhizoids. - Naturwissenschaften XLVI, p. 609–610.

    Google Scholar 

  • Needham, J. (1950). Biochemistry and morphogenesis. 2nd ed. - Cambridge, Camb. Univ. Press, xvi + 787 p.

    Google Scholar 

  • Oparin, A. (1957). Biochemical processes in the simplest structures. - Rep. Int. Symp. Origin of Life, Moscow, p. 221–228.

  • Pringle, J. W. S. (1953). The origin of life. - Symp. Soc. exp. Biol. VII, p. 1–21.

    Google Scholar 

  • Rauther, M. (1912). Über den Begriff der Verwandtschaft. - Zool. Jb. Suppl. III, p. 69–134.

    Google Scholar 

  • Russell, E. S. (1916). Form and function: a contribution to the history of animal morphology. - London, T. Murray, x + 383 p.

    Google Scholar 

  • Schoser, G. (1956). Über die Regeneration bei den Cladophoraceen. - Protoplasma XLVII, p. 103–134.

    Google Scholar 

  • Sissakian, N. M. (1957). The role of structural elements in the biochemical function of the cell. - Rep. Int. Symp. Origin of Life, Moscow, p. 235–250.

  • Spemann, H. (1915). Zur Geschichte und Kritik des Begriffs der Homologie. - Die Kultur der Gegenwart, Tl III, Abt. VIII, Vol. I, p. 63–86.

    Google Scholar 

  • Stern, C. (1957). The role of genes in differentiation. - Cytologia Suppl., p. 70–72.

  • Turing, A. M. (1952). The chemical basis of morphogenesis. - Phil. Trans. B CCXXXVII, p. 37–72.

    Google Scholar 

  • Wardlaw, C. W. (1953). A commentary on Turing's diffusion reaction theory of morphogenesis. - New Phytol. LII, p. 40–47.

    Google Scholar 

  • — (1957). The floral meristem as a reaction system. - Proc. roy. Soc. Edinb., Sect. B, LXVI, p. 394–408.

    Google Scholar 

  • Weiss, P. (1925). Unabhängigkeit der Extremitätenregeneration vom Skelett (beiTriton cristatus).- Arch. EntwMech. Org. CI V, p. 359–394.

    Google Scholar 

  • — (1950). Perspectives in the field of morphogenesis. - Quart. Rev. Biol. XXV, p. 177–198.

    Google Scholar 

  • Werz, G. (1959). Über polare Plasmaunterschiede beiAcetabularia. - Planta LIII, p. 502–521.

    Google Scholar 

  • Whitaker, D. M. (1937). Determination of polarity by centrifuging eggs ofFucus furcatus. - Biol. Bull. LXXIII, p. 249–260.

    Google Scholar 

  • — (1940a). The effects of ultracentrifuging and ofpH on the development ofFucus eggs. - J. cell. comp. Physiol. XV, p. 173–188.

    Google Scholar 

  • — (1940b). Physical factors of growth. - Growth Suppl. IV, p. 75–90.

    Google Scholar 

  • — (1942). Ultraviolet light and the development ofFucus eggs effected by auxin andpH. - Biol. Bull. LXXXII, p. 127–133.

    Google Scholar 

  • Wilson, K. (1955). The polarity of the cell-wall ofValonia. - Ann. Bot., Lond. XXIX, p. 289–292.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr.Alexander Oparin for his merits in the study of the origin of life

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakazawa, S. After the origin of life. Acta Biotheor 14, 29–42 (1961). https://doi.org/10.1007/BF01556931

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01556931

Keywords

Navigation