Skip to main content
Log in

Elements of a unifying theory of biology

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

To discover a unifying theory of biology, it is necessary first to believe in its existence and second to seek its elements. Such a theory would explain the regulation of the cell cycle, differentiation and the origin of life. Some elements of the theory may be obtained by considering both eukaryotic and prokaryotic cell cycles. These elements include cytoskeletal proteins, calcium, cyclins, protein kinase C, phosphorylation, transcriptional sensing, autocatalytic gene expression and the physical properties of lipids. Other more exotic candidate elements include the dynamic enzoskeleton, ATP generation, mechanotransduction, the piezoelectric effect and resonance. Bringing these disparate elements together — and discovering others — will require extensive collaborations between specialists from different sciences. This can only be achieved within the context of an integrated approach to biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berteaud, A.-J., M. Dardalhon, N. Rebeyrotte and M.D. Averbeck (1975). Action d'un rayonnement electromagnetique a longueur d'onde millimetrique sur la croissance bacterienne. C.R. Acad. Sci. Paris Serie D t. 281: 843–846.

    Google Scholar 

  • Casaregola, S., V. Norris, M. Goldberg and I.B. Holland (1990). Identification of a 180 kDa protein from E. coli related to a yeast myosin heavy chain. Mol. Microbiol. 4: 505–511.

    Article  Google Scholar 

  • Castuma, C.E., E. Crooke and A. Kornberg (1993). Fluid membranes with acidic domains activate DnaA, the initiator protein of replication in Escherichia coli. J. Biol. Chem. 268: 24665–24668.

    Google Scholar 

  • Churchward, G., H. Bremer and R. Young (1982). Transcription in bacteria at different DNA concentrations. J. Bacteriol. 150: 572–581.

    Google Scholar 

  • Cooper, M.S. (1981). Coherent polarization waves in cell division and cancer. Collective Phenomena 3: 273–288.

    Google Scholar 

  • Cortay, J.-C., C. Rieul, B. Duclos and A.J. Cozzone (1986). Characterization of the phosphoproteins of Escherichia coli by electrophoretic analysis. Eur. J. Biochem. 159: 227–237.

    Article  Google Scholar 

  • Davis, R.H., D.R. Morris and P. Coffino (1992). Sequestered end products and enzyme regulation: the case of ornithine decarboxylase. Microbiol. Rev. 56: 280–290.

    Google Scholar 

  • Devaux, P.F. and A. Zachowski (1994). Maintenance and consequences of membrane phospholipid asymmetry. Chem. Phys. Lipids 73: 107–120.

    Article  Google Scholar 

  • Frohlich, H. (1978). Coherent electric vibrations in biological systems and the cancer problem. IEEE Transactions on Microwave Theory and Techniques MTT-26: 613–617.

    Article  Google Scholar 

  • Frohlich, H. (1986). Coherence and the action of enzymes. In: G.R. Welch (Eds.), The Fluctuating Enzyme, pp. 421–449. John Wiley and Sons.

  • Glaser, M. (1993). Lipid domains in biological membranes. Curr. Opin. Struct. Biol. 3: 475–481.

    Article  Google Scholar 

  • Grundler, W. (1981). Recent results of experiments on nonthermal effects of millimeter microwaves on yeast growth. Collective Phenomena 3: 181–186.

    Google Scholar 

  • Hepler, P.K. (1994). The role of calcium in cell division. Cell Calcium 16: 322–330.

    Article  Google Scholar 

  • Ho, M.-W. (1993). The Rainbow and the Worm: The Physics of Organisms. Singapore, World Scientific Publishing.

    Book  Google Scholar 

  • Ingber, D.E. (1993). The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering? Cell 75: 1249–1252.

    Article  Google Scholar 

  • Kaidow, A., M. Wachi, J. Nakamura, J. Magae and K. Nagai (1995). Anucleate cell production by Escherichia coli Δhns mutant lacking a histone-like protein, H-NS. J. Bacteriol. 177: 3589–3592.

    Google Scholar 

  • Killian, J.A., M.C. Koorengevel, J.A. Bouwstra, G. Gooris, W. Dowhan and B. de Kruijff (1994). Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim. Biophys. Acta 1189: 225–232.

    Article  Google Scholar 

  • Lauck, L., A.R. Vasconcellos and R. Luzzi (1992). On Frohlich's coherent effects in biological systems: influence of carriers and high order dissipative effects. J. Theoret. Biol. 158: 1–13.

    Article  Google Scholar 

  • Leuchtag, H.R. (1987). Indications of the existence of ferroelectric units in excitable-membrane channels. J. Theoret. Biol. 127: 321–340.

    Article  Google Scholar 

  • Lipinski, B. (Ed.) (1982). Electronic Conduction and Mechanoelectrical Transduction in Biological Materials. New York, Marcel Dekker.

    Google Scholar 

  • Lynch, A.S. and J.C. Wang (1993). Anchoring of DNA to the bacterial cytoplasmic membrane through co-transcriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J. Bacteriol. 175: 1645–1655.

    Google Scholar 

  • Maddock, J.R. and L. Shapiro (1993). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717–1723.

    Article  Google Scholar 

  • Matsuhashi, M., A.N. Pankrushina, K. Endoh, H. Watanabe, Y. Mano, M. Hyodo, T. Fujita, K. Kunugita, T. Kaneko and S. Otani (1995). Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions: a new mechanism involving transmission of physical signals. J. Bacteriol. 177: 688–693.

    Google Scholar 

  • Monod, J. and F. Jacob (1961). General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. In: Cellular Regulatory Mechanisms, pp. 389–401. Cold Spring Harbor, The Biological Laboratory.

    Google Scholar 

  • Mozharov, A.D., V.N. Shchipakin, I.L. Fishov and Y.V. Evtodienko (1985). Changes in the composition of membrane phospholipids during the cell cycle of E. coli. FEBS Lett. 186: 103–106.

    Article  Google Scholar 

  • Niki, H., A. Jaffe, R. Imamura, T. Ogura and S. Hiraga (1991). The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10: 183–193.

    Google Scholar 

  • Norris, V. (1989). A calcium flux at the termination of replication triggers cell division in E. coli. Cell Calcium 10: 511–517.

    Article  Google Scholar 

  • Norris, V. (1989). Phospholipid flip-out controls the cell cycle of E. coli. J. Theoret. Biol. 139: 117–128.

    Article  Google Scholar 

  • Norris, V. (1992). Phospholipid domains determine the spatial organization of the Escherichia coli cell cycle: the membrane tectonics model. J. Theoret. Biol. 154: 91–107.

    Article  Google Scholar 

  • Norris, V. (1993). Sequestration of origins of chromosome replication in Escherichia coli by lipid compartments: the pocket hypothesis. J. Theoret Biol. 164: 239–244.

    Article  Google Scholar 

  • Norris, V. (1995). Hypotheses and the regulation of the bacterial cell cycle. Mol. Microbiol. 15: 785–787.

    Article  Google Scholar 

  • Norris, V. (1995). Hypothesis: chromosome separation in E. coli involves autocatalytic gene expression, transertion and membrane domain formation. Mol. Microbiol. 16: 1051–1057.

    Article  Google Scholar 

  • Norris, V. (1995). Hypothesis: transcriptional sensing and membrane domain formation initiate chromosome replication in Escherichia coli. Mol. Microbiol. 15: 985–987.

    Article  Google Scholar 

  • Norris, V., J.A. Ayala, K. Begg, J.-P. Bouché, P. Bouloc, E. Boye, S. Casaregola, A.J. Cozzone, E. Crooke, R. D'Ari, M.A. de Pedro, W.D. Donachie, R.J. Doyle, G.R. Drapeau, R. Fontana, S. Foster, J.A. Fralick, P. Freestone, R.C. Gayda, M. Goldberg, E. Guzman, J.H. Hageman, C.F. Higgins, M. Hofnung, I.B. Holland, J.-V. Holtje, P. Hughes, M. Inouye, S. Inouye, A. Jaffé, A. Jimenez-Sanchez, D. Joseleau-Petit, W. Keck, F. Kepes, A. Kornberg, P. Kuempel, H. Labischinski, A. Lobner-Olesen, J. Lutkenhaus, P.E. March, M. Matsuhashi, G. McGurk, W. Messer, J. Meury, Y. Milner, K. Modha, K. Nagai, T. Nagata, Y. Nishimura, S. Normark, E. Orr, A. Ottolenghi, L. Paolozzi, P. Poulsen, J.E. Rebollo, E.Z. Ron, J. Rouviere-Yaniv, K. Rudd, G.P.C. Salmond, G. Satta, U. Schwarz, S. Seror, A. Simon, B.G. Spratt, K. Sreekumar, S. Sweeney, R. Utsumi, D. Vinella, M. Wachi, B.M. Wilkins, P.H. Williams and C. Yanofsky (1994). Cell cycle control: prokaryotic solutions to eukaryotic problems? J. Theoret Biol. 168: 227–230.

    Article  Google Scholar 

  • Norris, V., M. Chen, M. Goldberg, J. Voskuil, M. McGurk and I.B. Holland (1991). Calcium in bacteria: a solution to which problem? Mol. Microbiol. 5: 775–778.

    Article  Google Scholar 

  • Norris, V. and M.S. Madsen (1995). Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: a model. J. Mol. Biol. 253: 739–748.

    Article  Google Scholar 

  • Norris, V., G. Turnock and D. Sigee (1996). The Escherichia coli enzoskeleton. Mol. Microbiol. 19: 197–204.

    Article  Google Scholar 

  • Rajnicek, A.M., C.D. McCaig and N.A.R. Gow (1994). Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 176: 702–713.

    Google Scholar 

  • Reusch, R.N., R. Huang and L.L. Bramble (1995). Poly-3-hydroxybutyrate/polyphosphate complexes form voltage-activated Ca2+ channels in the plasma membranes of Escherichia coli. Biophys. J. 69: 754–766.

    Article  Google Scholar 

  • Rietveld, A.G., M.C. Koorengevel and B. de Kruijff (1995). Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J. 14: 5506–5513.

    Google Scholar 

  • Scott, R.H., K.G. Sutton and A.C. Dolphin (1993). Interactions of polyamines with neuronal ion channels. Trends Neurosci. 16: 153–159.

    Article  Google Scholar 

  • Smith, R.J. (1995). Calcium and bacteria. Adv. Micro. Physiolo. 37: 83–103.

    Article  Google Scholar 

  • Sweetman, G., M. Trinei, J. Modha, J. Kusel, P. Freestone, I. Fishov, D. Joseleau-Petit, C. Redman, P. Farmer and V. Norris (1996). Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Mol. Microbiol. in press.

  • Tocanne, J.-F., L. Cezanne, A. Lopez, B. Piknova, V. Schram, J.-F. Tournier and M. Welby (1994). Lipid domains and lipid/protein interactions in biological membranes. Chem. Phys. Lipids 73: 139–158.

    Article  Google Scholar 

  • Tyson, J.J. (1991). Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Nat. Acad. Sci., U.S.A. 88: 7328–7332.

    Article  Google Scholar 

  • Vos-Scheperkeuter, G.H. and B. Witholt (1982). Co-translational insertion of envelope proteins; theoretical considerations and implications. Ann. Inst. Pasteur 133A: 129–138.

    Google Scholar 

  • Wang, N., J.P. Butler and D.E. Ingber (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127.

    Article  Google Scholar 

  • Welch, G.R. (Ed.) (1986). The Fluctuating Enzyme. New York: John Wiley and Sons.

    Google Scholar 

  • Xia, W. and W. Dowhan (1995). In vivo evidence of the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli. Proc. Nat. Acad. Sci., U.S.A. 92: 783–787.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, V., Madsen, M.S. & Freestone, P. Elements of a unifying theory of biology. Acta Biotheor 44, 209–218 (1996). https://doi.org/10.1007/BF00046528

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00046528

Keywords

Navigation