Skip to main content
Log in

Rank-dominant strategy and sincere voting

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

This study considers a voting rule wherein each player sincerely votes when he/she has no information about the preferences of the other players. We introduce the concept of rank-dominant strategies to discuss the situation where a player is completely ignorant in the preferences of the other players and decision theoretic justification of the concept. We show that under the plurality voting rule with the equal probability random tie-breaking, sincere voting is always the rank-dominant strategy of each voter. We also discuss other scoring rules and show that sincere voting may not be a rank-dominant strategy of a voter even with the equal probability random tie-breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Several previous studies show different versions of the theorem. See, for example, Moulin (1994) and Barberà (2010) for surveys of the studies. Gibbard (1977) and Hylland (1980) consider probabilistic voting rules. In this paper, we also focus on probabilistic rules.

  2. Ballester and Rey-Biel (2009) consider a larger class of voting rules than ours. They define two kinds of sincere strategies: Sincerity 1 and Sincerity 2. In this paper, we restrict our attention to a smaller class of voting mechanism called the simple voting mechanism by Ballester and Rey-Biel (2009). In this class, Sincerity 1 and Sincerity 2 are essentially equivalent.

  3. Pattanaik (1978) calls it a lexicographic maximin strategy. MacIntyre (1991,1995) considers prudent strategies in voting models.

  4. This characteristic is similar to the definition of “Pareto efficiency”, but the existence of some rank-dominant strategies is necessary for the result.

  5. See, for example, Montesano and Giovannoni (1996), Epstein (1999) and Ghirardato and Marinacci (2002) on the definitions of the attitudes towards uncertainty.

  6. In other words, the independence on the preference of a player is not required, but a weaker axiom called the comonotonic independence is required in this paper. See Schmeidler (1989) on these axioms.

  7. Barberà (1979) characterizes the decision scheme that is anonymous, neutral and strategy-proof. However, their scheme is a random dictatorship rule or does not satisfy unanimity if \(\left| A\right| \ge 3\), because of Hylland (1980) theorem. On the other hand, any scoring rule satisfies unanimity and thus any scoring rule is not strategy-proof.

  8. Note that since each voter completely knows an outcome function, \(U_{i}^{f}\left( m_{i},m_{-i}\right)\) is a usual von Neumann–Morgenstern utility.

  9. Note that this lemma is also dependent on \(\left( \left| A\right| ,\left| N\right| \right)\). That is, if \(N=\left\{ 1,2,3\right\}\) and \(A=\left\{ a,b\right\}\), then the plurality rule satisfies both neutrality and anonymity, because the preference of each voter is assumed to be strict.

  10. Moulin (1981) states that “In many familiar voting schemes, like plurality voting and Borda count, the prudent behavior is nothing but the sincere voting.” However, this statement is not correct in our framework.

  11. The author is grateful to Takuma Wakayama for pointing out this fact.

  12. On the other hand, for example, if \(\left| A\right| =3\) and \(\left| N\right| =5\), then a sincere strategy may not be a rank-dominant strategy. This is because, two alternatives may have the most votes; that is, \(s\left( m,a\right) =s\left( m,b\right) =2\) and \(s\left( m,c\right) =1\) for some m. Note that this is just a necessary condition that the above-mentioned problem happen. Thus, it is not easy to generalize this fact.

  13. Moulin (1981) writes that “plurality voting and the Borda method permits ties. ... Since this choice does not affect our statement we simply omit it.” . However, the tie-breaking rule affects whether or not a prudent strategy is sincere in our framework.

  14. The equal probability tie-breaking rule may not be a unique rule such that this result is satisfied. For example, if \(\left| N\right| =3\), then \(\left| S(m)\right| \ne 2\). That is, the tie-breaking rule when \(\left| S(m)\right| =2\) does not affect the strategies of voters.

  15. In the model of Ballester and Rey-Biel (2009), a message of a voter is not necessarily a linear order.

  16. Ballester and Rey-Biel (2009) discuss a voting mechanism satisfying Neutrality in alternatives and Weak Monotonicity in their Theorem 1. Although the requirements introduced by Ballester and Rey-Biel (2009) are closely related to the neutrality and elementary monotonicity in this study, respectively, their requirements are slightly different from our. However, as is mentioned by Ballester and Rey-Biel (2009), any scoring rule is a mechanism satisfying the neutrality and monotonicity defined by them.

References

  • Ballester, M. Á., & Rey-Biel, P. (2009). Does uncertainty lead to sincerity? Simple and complex voting mechanisms. Social Choice and Welfare, 33(3), 477–494.

    Article  Google Scholar 

  • Barberà, S. (2010). “Strategy-proof social choice.” In K. J. Arrow, A. K. Sen, & K. Suzumura (Eds.), Handbook of Social Choice and Welfare. Vol. 2 (pp. 731–831). North-Holland.

  • Barberà, S. (1977). The manipulation of social choice mechanisms that do not leave “too much” to chance. Econometrica, 45(7), 1573–1588.

    Article  Google Scholar 

  • Barberà, S. (1979). Majority and positional voting in a probabilistic framework. Review of Economic Studies, 46(2), 379–389.

    Article  Google Scholar 

  • Camerer, C. (1995). “Individual decision making.” In J. H. Kagel, & A. E. Roth (Eds.), Handbook of Experimental Economics. Vol. 1 (pp. 587–683). Princeton.

  • Dow, J., & Werlang, S. R. C. (1994). Nash equilibrium under uncertainty: Breaking down backward induction. Journal of Economic Theory, 64, 305–324.

    Article  Google Scholar 

  • Eichberger, J., & Kelsey, D. (2000). Non-additive beliefs and strategic equilibria. Games and Economic Behavior, 30, 183–215.

    Article  Google Scholar 

  • Epstein, L. G. (1999). A definition of uncertainty aversion. Review of Economic Studies, 66, 579–608.

    Article  Google Scholar 

  • Erdil, A., & Ergin, H. (2008). What’s the matter with tie-breaking? Improving efficiency in school choice. American Economic Review, 98(3), 669–689.

    Article  Google Scholar 

  • Gärdenfors, P. (1976). Manipulation of social choice functions. Journal of Economic Theory, 13, 217–228.

    Article  Google Scholar 

  • Ghirardato, P., & Marinacci, M. (2002). Ambiguity made precise: A comparative foundation. Journal of Economic Theory, 102, 251–289.

    Article  Google Scholar 

  • Gibbard, A. (1973). Manipulation of voting schemes: A general result. Econometrica, 41, 587–601.

    Article  Google Scholar 

  • Gibbard, A. (1977). Manipulation of schemes that mix voting with chance. Econometrica, 45(3), 665–681.

    Article  Google Scholar 

  • Hylland, A. (1980). “Strategy proofness of voting procedures with lotteries as outcomes and infinite sets of strategies,” Mimeo.

  • Knight, F. H. (1921). Risk, Uncertainty and Profit (1965th ed.). New York: Augustus M. Kelley.

    Google Scholar 

  • MacIntyre, I. (1991). The Pareto rule and strategic voting. Theory and Decision, 31(1), 1–19.

    Article  Google Scholar 

  • MacIntyre, I. (1995). Manipulation under majority decision-making when no majority suffers and preferences are strict. Theory and Decision, 35(2), 167–177.

    Article  Google Scholar 

  • Majumdar, D., & Sen, A. (2004). Ordinally Bayesian incentive compatible voting rules. Econometrica, 72(2), 523–540.

    Article  Google Scholar 

  • Marinacci, M. (2000). Ambiguous games. Games and Economic Behavior, 31, 191–219.

    Article  Google Scholar 

  • May, K. O. (1952). A set of independent necessary and sufficient conditions for simple majority decision. Econometrica, 20(4), 680–684.

    Article  Google Scholar 

  • Moulin, H. (1994). “Social choice,” In R. Aumann, & S. Hart (Eds.), Handbook of game theory with economic applications, Vol. 2 (pp. 1091–1125). North-Holland.

  • Moulin, H. (1981). Prudence versus sophistication in voting strategy. Journal of Economic Theory, 23, 398–412.

    Article  Google Scholar 

  • Naeve, J., & Revilla, P. (2004). “Demanding behavior in matching models,” Mimeo.

  • Naeve, J. (2000). Maximax, leximax, and the demanding criterion. Mathematical Social Sciences, 40, 313–325.

    Article  Google Scholar 

  • Okumura, Y. (2019). What proportion of sincere voters guarantees efficiency? Social Choice and Welfare, 53(2), 299–311.

    Article  Google Scholar 

  • Pattanaik, P. (1978). Strategy and group choice. North-Holland: Elsevier.

    Google Scholar 

  • Quirk, J. P., & Saposnik, R. (1962). Admissibility and Measurable Utility Functions. Review of Economics Studies, 29, 140–146.

    Article  Google Scholar 

  • Roth, A. E., & Rothblum, U. G. (1999). Truncation strategies in matching markets—in search of advice for participants. Econometrica, 67, 21–43.

    Article  Google Scholar 

  • Satterthwaite, M. A. (1975). Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10, 187–217.

    Article  Google Scholar 

  • Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Econometrica, 57, 571–587.

    Article  Google Scholar 

  • Zeckhauser, R. (1973). Voting systems, honest preferences, and Pareto optimality. American Political Science Review, 67, 934–946.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Okumura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A previous version of this work is presented in 2015 Japanese Economic Association Autumn Meeting at Sophia University under the title of “Rank-dominant strategy implementation in voting”. The author is grateful to Takuma Wakayama, Nobuo Koida, two anonymous referees and an associate editor for many valuable comments and suggestions. This work was supported by JSPS KAKENHI Grant nos. JP20K01675, JP19K01542, JP18K01513 and JP16K03612.

Appendix

Appendix

1.1 Proof of Fact 1

Suppose that there exists a rank-dominant strategy of i denoted by \(m_{i}\) . We show the first result. Since \(m_{i}\) is a rank-dominant strategy of i , \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) \ge U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\) for all \(s\in \left\{ 1,\ldots ,\theta _{i}\right\}\) and all \(m_{i}^{\prime }\in M_{i}\). Then \(m_{i}\) is not rank-dominated by any strategy in \(M_{i}\).

We show the second result. If \(m_{i}^{\prime }\in M_{i}\) is also a rank-dominant strategy of i, then both \(U_{i}^{f}\left( m_{i}^{\prime }, \mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right) \ge U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\) and \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) \ge U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\) for all \(s\in \left\{ 1,\ldots ,\theta _{i}\right\}\). Therefore, \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) =U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\) for all \(s\in \left\{ 1,\ldots ,\theta _{i}\right\}\).

We show the third result. If \(m_{i}^{\prime }\in M_{i}\) is not a rank-dominant strategy of i, then there is \(m_{i}^{\prime \prime }\) such that \(U_{i}^{f}\left( m_{i}^{\prime \prime },\mathrm {m}_{-i}^{t}\left( m_{i}^{\prime \prime }\right) \right) >U_{i}^{f}\left( m_{i}^{\prime }, \mathrm {m}_{-i}^{t}\left( m_{i}^{\prime }\right) \right)\) for some \(t\in \left\{ 1,\ldots ,\theta _{i}\right\}\). Since \(m_{i}\) is a rank-dominant strategy, then \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{t}\left( m_{i}\right) \right) \ge U_{i}^{f}\left( m_{i}^{\prime \prime },\mathrm {m} _{-i}^{t}\left( m_{i}^{\prime \prime }\right) \right) >U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{t}\left( m_{i}^{\prime }\right) \right)\). Moreover, since \(m_{i}\) a rank-dominant strategy, \(U_{i}^{f}\left( m_{i}, \mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) \ge U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\) for all \(s\in \left\{ 1,\ldots ,\theta _{i}\right\}\). Therefore, \(m_{i}\) rank-dominates \(m_{i}^{\prime }\).

1.2 Proof of Lemma 1

We show the necessary part (the only-if-part). Suppose that \(m_{i}^{\prime }\) is rank-dominated by \(m_{i}\). First, we show (1). Toward a contradiction, suppose that (1) is not satisfied for \(x\ge 0\) or (1) is satisfied in equality for any x. In the latter case, the fact that (1) is satisfied in equality for any x contradicts that \(m_{i}^{\prime }\) is not rank-dominated by \(m_{i}\).

Thus, we consider the former case. Then there is \(x\ge 0\) such that \(\left| M_{-i}^{f}\left( m_{i}^{\prime },x\right) \right| >\left| M_{-i}^{f}\left( m_{i},x\right) \right| \ge 0\). Then \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right) \ge x\) for some \(s=1,\ldots ,\theta _{i}\). If \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{\theta _{i}}\left( m_{i}^{\prime }\right) \right) \ge x\), then \(x>U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{\theta _{i}}\left( m_{i}\right) \right)\). Then \(U_{i}^{f}\left( m_{i}^{\prime }, \mathrm {m}_{-i}^{\theta _{i}}\left( m_{i}^{\prime }\right) \right) \ge x>U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{\theta _{i}}\left( m_{i}\right) \right)\) contradicts that \(m_{i}^{\prime }\) is rank-dominated by \(m_{i}\). Thus, there is \(s=1,\ldots ,\theta _{i}-1\) such that \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right) \ge x>U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s+1}\left( m_{i}^{\prime }\right) \right)\). Then \(x>U_{i}^{f}\left( m_{i},\mathrm {m} _{-i}^{s}\left( m_{i}\right) \right)\) and \(U_{i}^{f}\left( m_{i}^{\prime }, \mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right) >U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\). This also contradicts that \(m_{i}^{\prime }\) is rank-dominated by \(m_{i}\). Therefore, we have (1) for all \(x\ge 0\).

Second, we show that the strict inequality of (1) is satisfied for some x. Since \(m_{i}^{\prime }\) is rank-dominated by \(m_{i}\), we can let \(s=1,\ldots ,\theta _{i}\) be such that \(U_{i}^{f}\left( m_{i},\mathrm {m} _{-i}^{s}\left( m_{i}\right) \right) >U_{i}^{f}\left( m_{i}^{\prime }, \mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\). Then

$$\begin{aligned} \left| M_{-i}^{f}\left( m_{i},x\right) \right| \ge s>\left| M_{-i}^{f}\left( m_{i}^{\prime },x\right) \right| \end{aligned}$$

for any \(x\in \left( U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m} _{-i}^{s}\left( m_{i}^{\prime }\right) \right) ,U_{i}^{f}\left( m_{i}, \mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) \right)\). Hence, the strict inequality of (1) is satisfied for some \(x\ge 0\).

Next, show the sufficiency part (the if-part). Suppose that (1) is satisfied for any \(x\ge 0\) and the strict inequality of (1) is satisfied for some \(x\ge 0\). First, toward a contradiction, suppose that \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) <U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\) for some \(s=1,\ldots ,\theta _{i}\). Let \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right) =x\) . Then

$$\begin{aligned} \left| M_{-i}^{f}\left( m_{i}^{\prime },x\right) \right| =s>\left| M_{-i}^{f}\left( m_{i},x\right) \right| , \end{aligned}$$

contradicting that (1) is satisfied for any \(x\ge 0\). Therefore, \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) \ge U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\) for all \(s=1,\ldots ,\theta _{i}\).

Finally, let x be such that \(\left| M_{-i}^{f}\left( m_{i},x\right) \right| >\left| M_{-i}^{f}\left( m_{i}^{\prime },x\right) \right|\) and \(\left| M_{-i}^{f}\left( m_{i},x\right) \right| =t\) . Then we have \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{t}\left( m_{i}\right) \right) >U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m} _{-i}^{t}\left( m_{i}^{\prime }\right) \right)\). Therefore, \(m_{i}^{\prime }\) is rank-dominated by \(m_{i}\).

1.3 Proof of Proposition 1

First, we show the second result, because the first result is straightforward from this. By Lemma 1,

$$\begin{aligned} \left| \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right| \ge \left| \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right| \text { for all }\delta =1,\ldots ,\Delta \end{aligned}$$

and the strict inequality holds for some \(\delta =1,\cdots ,\Delta\). By Assumption 1,

$$\begin{aligned} v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right) \ge v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right) \text { for all }\delta =1,\ldots ,\Delta , \end{aligned}$$
(5)

and the strict inequality holds for some \(\delta =1,\ldots ,\Delta\). Therefore, we have \(V_{i}^{f}\left( m_{i}\right) >V_{i}^{f}\left( m_{i}^{\prime }\right)\).

By the second result of Proposition 1 and the third result of Fact 1, we have the first result of Proposition 1.

Next, we show the third result. Suppose that \(m_{i}^{\prime }\) is not rank-dominated by \(m_{i}\) and \(\mu _{i}^{f}\left( m_{i}\right) \ne \mu _{i}^{f}\left( m_{i}^{\prime }\right)\). Then there is \(s\in \{1,\ldots ,\theta _{i}\}\), such that \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) <U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m} _{-i}^{s}\left( m_{i}^{\prime }\right) \right)\). We choose the largest integer \(s^{*}\) satisfying \(U_{i}^{f}\left( m_{i},\mathrm {m} _{-i}^{s^{*}}\left( m_{i}\right) \right) <U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s^{*}}\left( m_{i}^{\prime }\right) \right)\) and let \(x_{i}^{\delta }=U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s^{*}}\left( m_{i}^{\prime }\right) \right)\).

First, suppose \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{1}\left( m_{i}\right) \right) <x_{i}^{\delta }\) and \(s^{*}=\theta _{i}\). Then

$$\begin{aligned} U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\le & {} x_{i}^{\delta +1}\text { for all }s\in \{1,\ldots ,\theta _{i}\}, \end{aligned}$$
(6)
$$\begin{aligned} U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\ge & {} x_{i}^{\delta }\text { for all }s\in \{1,\ldots ,\theta _{i}\}. \end{aligned}$$
(7)

Therefore, we have

$$\begin{aligned} V_{i}^{f}\left( m_{i}\right) \le x_{i}^{\delta +1}<x_{i}^{\delta }\le V_{i}^{f}\left( m_{i}^{\prime }\right) . \end{aligned}$$

Second, suppose \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{1}\left( m_{i}\right) \right) <x_{i}^{\delta }\) and \(s^{*}<\theta _{i}\). Then

$$\begin{aligned} U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\ge & {} x_{i}^{\delta }\text { for all }s\in \{1,\ldots ,s^{*}\}, \end{aligned}$$
(8)
$$\begin{aligned} U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\ge & {} x_{i}^{\Delta }\text { for all }s\in \{s^{*}+1,\ldots ,\theta _{i}\}, \end{aligned}$$
(9)

and (6) are satisfied. In this case, let

$$\begin{aligned} v\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right) =1-\epsilon \text {.} \end{aligned}$$

Then

$$\begin{aligned} V_{i}^{f}\left( m_{i}\right)\le & {} x_{i}^{\delta +1}, \\ V_{i}^{f}\left( m_{i}^{\prime }\right)\ge & {} \left( 1-\epsilon \right) x_{i}^{\delta }+\epsilon x_{i}^{\Delta }. \end{aligned}$$

Therefore, if \(\epsilon\) is sufficiently small, then \(V_{i}^{f}\left( m_{i}^{\prime }\right) >V_{i}^{f}\left( m_{i}\right)\).

Third, suppose \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{1}\left( m_{i}\right) \right) \ge x_{i}^{\delta }\) and \(s^{*}=\theta _{i}\). Then

$$\begin{aligned} U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\le & {} x_{i}^{1}\text { for all }s\in \{1,\ldots ,s^{*}-1\}, \end{aligned}$$
(10)
$$\begin{aligned} U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\le & {} x_{i}^{\delta +1}\text { for all }s\in \{s^{*},\ldots ,\theta _{i}\}, \end{aligned}$$
(11)

and (7) are satisfied. In this case, let

$$\begin{aligned} v\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right) =\epsilon \text {.} \end{aligned}$$

Then

$$\begin{aligned} V_{i}^{f}\left( m_{i}\right)\le & {} \epsilon x_{i}^{1}+\left( 1-\epsilon \right) x_{i}^{\delta +1}, \\ V_{i}^{f}\left( m_{i}^{\prime }\right)\ge & {} x_{i}^{\delta }\text {.} \end{aligned}$$

Therefore, if \(\epsilon\) is sufficiently small, then \(V_{i}^{f}\left( m_{i}^{\prime }\right) >V_{i}^{f}\left( m_{i}\right)\).

Finally, suppose \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{1}\left( m_{i}\right) \right) \ge x_{i}^{\delta }\) and \(s^{*}<\theta _{i}\). Then (8), (9), (10) and (11) are satisfied. In this case, since \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s^{*}}\left( m_{i}\right) \right) <U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m} _{-i}^{s^{*}}\left( m_{i}^{\prime }\right) \right) =x_{i}^{\delta }\) and \(U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{1}\left( m_{i}\right) \right) \ge x_{i}^{\delta }\),

$$\begin{aligned} \emptyset \ne \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \subsetneq \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \text {.} \end{aligned}$$

Therefore, we can let

$$\begin{aligned} v\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right) =\epsilon \text { and }v\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right) =1-\epsilon \end{aligned}$$

where \(\epsilon \in \left( 0,1/2\right)\). Then

$$\begin{aligned} V_{i}^{f}\left( m_{i}\right)\le & {} \epsilon x_{i}^{1}+\left( 1-\epsilon \right) x_{i}^{\delta +1} \\ V_{i}^{f}\left( m_{i}^{\prime }\right)\ge & {} \left( 1-\epsilon \right) x_{i}^{\delta }+\epsilon x_{i}^{\Delta } \end{aligned}$$

We have

$$\begin{aligned} V_{i}^{f}\left( m_{i}^{\prime }\right) -V_{i}^{f}\left( m_{i}\right) \ge -\left( x_{i}^{1}-x_{i}^{\Delta }\right) \epsilon +\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) \left( 1-\epsilon \right) \text {.} \end{aligned}$$

Therefore, if \(\epsilon\) is sufficiently small, then the right-hand side is positive and thus \(V_{i}^{f}\left( m_{i}^{\prime }\right) >V_{i}^{f}\left( m_{i}\right)\).

1.4 Proof of Proposition 2

First, we show the second result, because we use this to show the first result. Suppose that \(m_{i}\) is rank-dominated by \(m_{i}^{\prime }\). Then there is \(t\in \{1,\ldots ,\theta _{i}\}\) such that \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{t}\left( m_{i}^{\prime }\right) \right) >U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{t}\left( m_{i}\right) \right)\). Let x be such that \(\psi _{i}^{x}=t\). If \(m_{i}\notin M_{i}^{x-1}\left( \psi _{i}\right)\), then the proof is finished. If \(m_{i}\in M_{i}^{x-1}\left( \psi _{i}\right)\), then \(m_{i}^{\prime }\in M_{i}^{x-1}\left( \psi _{i}\right)\). This is because \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m} _{-i}^{s}\left( m_{i}^{\prime }\right) \right) \ge U_{i}^{f}\left( m_{i}, \mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\) for all \(s\in \{1,\ldots ,\theta _{i}\}\). Then \(m_{i}\notin M_{i}^{x}\left( \psi _{i}\right)\) and therefore \(m_{i}\notin M_{i}^{*}\left( \psi _{i}\right)\).

We show the first result. Let \(RDS_{i}\) be the set of rank-dominant strategies of i. Suppose \(RDS_{i}\ne \emptyset\). First, we show \(M_{i}^{*}\left( \psi _{i}\right) \subseteq RDS_{i}\). By the third result of Fact 1 and the second result of Proposition 2, if \(m_{i}^{\prime }\notin RDS_{i}\), then \(m_{i}^{\prime }\notin M_{i}^{*}\left( \psi _{i}\right)\) . Therefore, \(M_{i}^{*}\left( \psi _{i}\right) \subseteq RDS_{i}\). Second, we show \(RDS_{i}\subseteq M_{i}^{*}\left( \psi _{i}\right)\). Since \(M_{i}^{*}\left( \psi _{i}\right) \ne \emptyset\) and any non-rank-dominant strategy is not in \(M_{i}^{*}\left( \psi _{i}\right)\) , a rank-dominant strategy is in \(M_{i}^{*}\left( \psi _{i}\right)\). By the second result of Fact 1, any rank-dominant strategy is in \(M_{i}^{*}\left( \psi _{i}\right)\); that is, \(RDS_{i}\subseteq M_{i}^{*}\left( \psi _{i}\right)\). By the two facts, we have \(RDS_{i}=M_{i}^{*}\left( \psi _{i}\right)\).

1.5 Proof of remark 1

Suppose that player i has a Choquet expected utility function given by ( 3) and (4) is satisfied. Moreover, suppose that \(m_{i}^{\prime }\) is a prudent strategy and \(m_{i}\) is not. We show if \(z_{i}\) is sufficiently large, then \(V_{i}^{f}\left( m_{i}^{\prime }\right) >V_{i}^{f}\left( m_{i}\right)\). There exists \(s^{*}\in \left\{ 1,\ldots ,\theta _{i}\right\}\) such that

$$\begin{aligned} U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s^{*}}\left( m_{i}^{\prime }\right) \right)> & {} U_{i}^{f}\left( m_{i},\mathrm {m} _{-i}^{s^{*}}\left( m_{i}\right) \right) \text { and} \nonumber \\ U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)= & {} U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right) \text { for all }s\in \left\{ s^{*}+1,\ldots ,\theta _{i}\right\} \text {.} \end{aligned}$$
(12)

Let \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s^{*}}\left( m_{i}^{\prime }\right) \right) =x^{d^{\prime }}\) and \(U_{i}^{f}\left( m_{i}, \mathrm {m}_{-i}^{s^{*}}\left( m_{i}\right) \right) =x^{d}\) where \(d^{\prime }<d\). Then \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m} _{-i}^{s^{*}+1}\left( m_{i}^{\prime }\right) \right) \le x^{d}\). Let \(s^{**}\) be the largest integer such that \(U_{i}^{f}\left( m_{i}, \mathrm {m}_{-i}^{s^{**}}\left( m_{i}\right) \right) =x^{d}\). By (12),

$$\begin{aligned} \sum _{\delta =d+1}^{\Delta }\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right) =\sum _{\delta =d+1}^{\Delta }\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right) . \end{aligned}$$
(13)

Moreover, since

$$\begin{aligned} U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s}\left( m_{i}\right) \right)\le & {} x_{i}^{1}\text { for }s\in \left\{ 1,\ldots ,s^{*}-1\right\} , \\ U_{i}^{f}\left( m_{i},\mathrm {m}_{-i}^{s^{*}}\left( m_{i}\right) \right)= & {} x^{d}\le x^{d^{\prime }+1}, \\ U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right)\ge & {} x_{i}^{d^{\prime }}\text { for }s\in \left\{ 1,\ldots ,s^{*}-1\right\} , \end{aligned}$$

we have

$$\begin{aligned} \sum _{\delta =1}^{d^{\prime }-1}\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right)\ge & {} x_{i}^{d^{\prime }}\left( \frac{ s^{*}-1}{\theta _{i}}\right) ^{z_{i}} \end{aligned}$$
(14)
$$\begin{aligned} \sum _{\delta =1}^{d-1}\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right)\le & {} x_{i}^{1}\left( \frac{s^{*}-1}{\theta _{i}}\right) ^{z_{i}}. \end{aligned}$$
(15)

First, suppose \(s^{*}=s^{**}\). Then since \(U_{i}^{f}\left( m_{i}^{\prime },\mathrm {m}_{-i}^{s}\left( m_{i}^{\prime }\right) \right) \ne x^{d}\) for any s,

$$\begin{aligned} \sum _{\delta =d^{\prime }}^{d}\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right)= & {} x_{i}^{d^{\prime }}\left( \frac{s^{*}}{ \theta _{i}}\right) ^{z_{i}}-x_{i}^{d+1}\left( \frac{s^{*}}{\theta _{i}} \right) ^{z_{i}} \end{aligned}$$
(16)
$$\begin{aligned} \left( x_{i}^{d}-x_{i}^{d+1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right)= & {} x_{i}^{d}\left( \frac{s^{*}}{ \theta _{i}}\right) ^{z_{i}}-x_{i}^{d+1}\left( \frac{s^{*}}{\theta _{i}} \right) ^{z_{i}}\text { }. \end{aligned}$$
(17)

By (13), (14), (15), (16) and (17), we have

$$\begin{aligned}&V_{i}^{f}\left( m_{i}^{\prime }\right) -V_{i}^{f}\left( m_{i}\right) \ge -\left( x_{i}^{1}-x_{i}^{d^{\prime }}\right) \left( \frac{s^{*}-1}{ \theta _{i}}\right) ^{z_{i}}+\left( x_{i}^{d^{\prime }}-x_{i}^{d}\right) \left( \frac{s^{*}}{\theta _{i}}\right) ^{z_{i}} \nonumber \\&\qquad =\left( \frac{s^{*}}{\theta _{i}}\right) ^{z_{i}}\left[ -\left( x_{i}^{1}-x_{i}^{d^{\prime }}\right) \left( \frac{s^{*}-1}{s^{*}} \right) ^{^{z_{i}}}+\left( x_{i}^{d^{\prime }}-x_{i}^{d}\right) \right] . \end{aligned}$$
(18)

Second, \(s^{**}>s^{*}\). Then

$$\begin{aligned}&\sum _{\delta =d^{\prime }}^{d}\left( x_{i}^{\delta }-x_{i}^{\delta +1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}^{\prime }\right) \right) =\left( x_{i}^{d^{\prime }}-x_{i}^{d}\right) \left( \frac{s^{*}}{\theta _{i}}\right) ^{z_{i}}+\left( x_{i}^{d}-x_{i}^{d+1}\right) \left( \frac{s^{**}}{\theta _{i}} \right) ^{z_{i}} \end{aligned}$$
(19)
$$\begin{aligned}&\left( x_{i}^{d}-x_{i}^{d+1}\right) v_{i}\left( \bigcup \limits _{j=1}^{\delta }E_{i}^{j}\left( m_{i}\right) \right) =\left( x_{i}^{d}-x_{i}^{d+1}\right) \left( \frac{s^{**}}{\theta _{i}}\right) ^{z_{i}}. \end{aligned}$$
(20)

By (13), (14), (15), (17), (19) and (20), we also have (18). Therefore, if \(z_{i}\) is sufficiently large, then \(V_{i}^{f}\left( m_{i}^{\prime }\right) >V_{i}^{f}\left( m_{i}\right)\).

1.6 Proof of Theorem 1

Suppose that a deterministic outcome function f satisfies neutrality and elementary monotonicity. First, let \(m_{i}\) be a strict sincere strategy of i. We show that \(\left| M_{-i}^{f}\left( m_{i},x\right) \right| \ge \left| M_{-i}^{f}\left( m_{i}^{\prime },x\right) \right|\) is satisfied for all \(m_{i}^{\prime }\in M_{i}\) and for all \(x\ge 0\). A similar fact is shown by Majumdar and Sen (2004) in the proof of their Theorem 3.1.

For notational simplicity, we let

$$\begin{aligned} \left| \left\{ m_{-i}\in M_{-i}\text { }\left| \text { }f_{a}\left( m_{i},m_{-i}\right) =1\right. \right\} \right| =\xi \left( m_{i},a\right) . \end{aligned}$$

First, we show

$$\begin{aligned} \xi \left( m_{i},m_{i}^{k}\right) =\xi \left( m_{i}^{\prime },m_{i}^{\prime k}\right) \text { for any }m_{i},m_{i}^{\prime }\in M_{i}, \end{aligned}$$
(21)

Fix \(i\in N\), \(m_{i}\in M_{i}\) and \(k=1,\ldots ,\left| A\right|\). To consider the nontrivial cases only, we assume that there is \(m_{-i}\in M_{-i}\) such that \(f_{m_{i}^{k}}\left( m\right) =1\). Let \(\sigma :A\rightarrow A\) be a permutation of A such that \(\sigma \left( m_{i}^{k}\right) =m_{i}^{\prime k}\) for all \(k=1,\ldots ,\left| A\right| -1\). By neutrality, \(f_{m_{i}^{k}}\left( m\right) =f_{m_{i}^{\prime k}}\left( m_{i}^{\prime },m_{-i}^{\sigma }\right) =1\). Hence, if there is \(m_{-i}\in M_{-i}\) such that \(f_{m_{i}^{k}}\left( m\right) =1\), then there is \(m_{-i}^{\prime }\in M_{-i}\) such that \(f_{m_{i}^{\prime k}}\left( m_{i}^{\prime },m_{-i}^{\prime }\right) =1\). Hence, we have \(\xi \left( m_{i},m_{i}^{k}\right) \le \xi \left( m_{i}^{\prime },m_{i}^{\prime k}\right)\). Since we can similarly obtain \(\xi \left( m_{i},m_{i}^{k}\right) \ge \xi \left( m_{i}^{\prime },m_{i}^{\prime k}\right)\), we have (21).

Second, we show

$$\begin{aligned} \xi \left( m_{i},m_{i}^{k}\right) \ge \xi \left( m_{i},m_{i}^{k+1}\right) \text { for all }k=1,\ldots ,\left| A\right| -1. \end{aligned}$$
(22)

Fix \(i\in N\), \(m_{i}\in M_{i}\) and \(k=1,\ldots ,\left| A\right| -1\). Let \(m_{i}^{k}=a\), \(m_{i}^{k+1}=b\) and \(m_{i}^{\prime }\) be such that \(m_{i}^{\prime k}=b\), \(m_{i}^{\prime k+1}=a\) and \(m_{i}^{l}=m_{i}^{\prime l}\) for all \(l\ne k,k+1\). That is, \(m_{i}\) is an elementary a-improvement of \(m_{i}^{\prime }\). To consider the nontrivial cases only, we assume that there is \(m_{-i}\in M_{-i}\) such that \(f_{a}\left( m_{i}^{\prime },m_{-i}\right) =1\). Then by elementary monotonicity, \(f_{a}\left( m_{i},m_{-i}\right) =1\) is satisfied. This implies that \(\xi \left( m_{i},a\right) \ge \xi \left( m_{i}^{\prime },a\right)\). By (21), \(\xi \left( m_{i}^{\prime },a\right) =\xi \left( m_{i},b\right)\) and, therefore, \(\xi \left( m_{i},a\right) \ge \xi \left( m_{i},b\right)\). We have (22).

Moreover, (22) indicates

$$\begin{aligned} \xi \left( m_{i},m_{i}^{1}\right) \ge \xi \left( m_{i},m_{i}^{2}\right) \ge \cdots \ge \xi \left( m_{i},m_{i}^{\left| A\right| }\right) . \end{aligned}$$
(23)

Now, let \(m_{i}\) be a strict sincere strategy and \(m_{i}^{\prime }\in M_{i}\setminus \left\{ m_{i}\right\}\). By (21), for all \(K=1,2,\ldots ,\left| A\right|\),

$$\begin{aligned} \sum \limits _{k=1}^{K}\xi \left( m_{i},m_{i}^{k}\right) =\sum \limits _{k=1}^{K}\xi \left( m_{i}^{\prime },m_{i}^{\prime k}\right) \text {.} \end{aligned}$$

Moreover, by (23),

$$\begin{aligned} \sum \limits _{k=1}^{K}\xi \left( m_{i}^{\prime },m_{i}^{\prime k}\right) =\xi \left( m_{i}^{\prime },m_{i}^{\prime 1}\right) +\xi \left( m_{i}^{\prime },m_{i}^{\prime 2}\right) +\cdots +\xi \left( m_{i}^{\prime },m_{i}^{\prime K}\right) \ge \sum \limits _{k=1}^{K}\xi \left( m_{i}^{\prime },m_{i}^{k}\right) , \end{aligned}$$

because the left-hand side is the sum of the elements of the largest to the Kth largest. Hence, we have

$$\begin{aligned} \sum \limits _{k=1}^{K}\xi \left( m_{i},m_{i}^{k}\right) \ge \sum \limits _{k=1}^{K}\xi \left( m_{i}^{\prime },m_{i}^{k}\right) \text {.} \end{aligned}$$

Since \(m_{i}\) is a strict sincere strategy, we have (1) is satisfied for all \(m_{i}^{\prime }\in M_{i}\) and for all \(x\ge 0\). By Lemma 1 and Fact 1, a strict sincere strategy is a rank-dominant strategy of i.

Finally, let \(m_{i}\) be a strict sincere strategy of i and \(m_{i}^{\prime }\) be a sincere strategy of i. Since \(f\left( m_{i}^{\prime },m_{-i}\right) =f\left( m_{i},m_{-i}\right)\) for all \(m_{-i}\in M_{-i}\), \(\mu _{i}^{f}\left( m_{i}\right) =\mu _{i}^{f}\left( m_{i}^{\prime }\right)\) . Therefore, if \(m_{i}\) is a rank-dominant strategy of i, then \(m_{i}^{\prime }\) is also a rank-dominant strategy of i. Since a strict sincere strategy is a rank-dominant strategy of i, any sincere strategy of i is a rank-dominant strategy of i.

1.7 Proof of Theorem 2

First, we show the following claim.

Claim 1

Suppose that f is the plurality voting with the equal probability tie-breaking rule. Then for any \(\left( \left| A\right| ,\left| N\right| \right)\), \(\gamma \left( a_{i}^{*}\right)\) is a sincere strategy of i but \(\gamma \left( a\right)\) is not sincere strategy for any \(a\in A\setminus \left\{ a_{i}^{*}\right\}\).

Proof of Claim 1

Let \(m_{i}\) be a strict sincere strategy of i. Since \(w^{1}=1\) and \(w^{2}=\cdots =w^{\left| A\right| }=0\), \(S\left( m_{i},m_{-i}\right) =S\left( \gamma \left( a_{i}^{*}\right) ,m_{-i}\right)\) for any \(m_{-i}\in M_{-i}\). Since f is the plurality voting with the equal probability tie-breaking rule, \(f_{a}\left( m_{i},m_{-i}\right) =f_{a}\left( \gamma \left( a_{i}^{*}\right) ,m_{-i}\right)\) for \(a\in A\) and all \(m_{-i}\in M_{-i}\). Therefore, \(\gamma \left( a_{i}^{*}\right)\) is a sincere strategy of i.

Let \(a\in A\setminus \left\{ a_{i}^{*}\right\}\). First, suppose that n is odd. Let \(\hat{m}_{-i}\) be such that

$$\begin{aligned} s\left( \left( \gamma \left( a_{i}^{*}\right) ,\hat{m}_{-i}\right) ,a_{i}^{*}\right) =\frac{n+1}{2}\text { and }s\left( \left( \gamma \left( a_{i}^{*}\right) ,\hat{m}_{-i}\right) ,a\right) =\frac{n-1}{2}. \end{aligned}$$
(24)

In this case, \(S(\gamma \left( a_{i}^{*}\right) ,\hat{m} _{-i})=\{a_{i}^{*}\}\) and \(S(\gamma \left( a\right) ,\hat{m}_{-i})=\{a\}\) . Hence, \(f_{a_{i}^{*}}\left( \gamma \left( a_{i}^{*}\right) ,\hat{m} _{-i}\right) \ne f_{a_{i}^{*}}\left( \gamma \left( a\right) ,\hat{m} _{-i}\right)\). Second, suppose that n is even. Let \(\tilde{m}_{-i}\) be such that

$$\begin{aligned} s\left( \left( \gamma \left( a_{i}^{*}\right) ,\tilde{m}_{-i}\right) ,a_{i}^{*}\right) =\text { }s\left( \left( \gamma \left( a_{i}^{*}\right) ,\tilde{m}_{-i}\right) ,a_{i}\right) =\frac{n}{2}. \end{aligned}$$
(25)

Then \(S(\gamma \left( a_{i}^{*}\right) ,\tilde{m}_{-i})=\{a_{i}^{*},a\}\) and \(S(\gamma \left( a\right) ,\tilde{m}_{-i})=\{a\}\). Hence, \(f_{a_{i}^{*}}\left( \gamma \left( a_{i}^{*}\right) ,\tilde{m} _{-i}\right) \ne f_{a_{i}^{*}}\left( \gamma \left( a\right) ,\tilde{m} _{-i}\right)\). \(\square\)

Let \(a\in A\setminus \left\{ a_{i}^{*}\right\}\). By Claim 1, to show Theorem 2, we show that \(\gamma \left( a_{i}^{*}\right)\) is a rank-dominant strategy and \(\gamma \left( a\right)\) is not for any \(a\in A\setminus \left\{ a_{i}^{*}\right\}\); that is,

$$\begin{aligned} U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\mathrm {m} _{-i}^{s}\left( \gamma \left( a_{i}^{*}\right) \right) \right) \ge U_{i}^{f}\left( \gamma \left( a\right) ,\mathrm {m}_{-i}^{s}\left( \gamma \left( a\right) \right) \right) \end{aligned}$$

for all \(s\in \left\{ 1,\cdots ,\theta _{i}\right\}\) and

$$\begin{aligned} U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\mathrm {m} _{-i}^{t}\left( \gamma \left( a_{i}^{*}\right) \right) \right) >U_{i}^{f}\left( \gamma \left( a\right) ,\mathrm {m}_{-i}^{t}\left( \gamma \left( a\right) \right) \right) \end{aligned}$$

for some \(t\in \left\{ 1,\ldots ,\theta _{i}\right\}\).

We introduce the concept of pivotal strategies. For given f, \(m_{i}\) is said to be a pivotal strategy of i for \(m_{-i}\) if \(m_{i}^{1}\in S(m)\) and there exists \(z\in M_{i}\setminus \{m_{i}\}\) such that \(S(m)\ne S(z,m_{-i})\).

First, suppose that \(m_{-i}\) for which neither \(\gamma \left( a_{i}^{*}\right)\) nor \(\gamma \left( a\right)\) is a pivotal strategy of i. Then \(U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,m_{-i}\right) =U_{i}^{f}\left( \gamma \left( a\right) ,m_{-i}\right)\).

Second, let

$$\begin{aligned} M_{-i}^{P}(c)=\left\{ m_{-i}\left| \text { }\gamma \left( c\right) \text { is a pivotal strategy of }i\text { for }m_{-i}\right. \right\} \subseteq M_{-i}. \end{aligned}$$

Then \(\left| M_{-i}^{P}(a_{i}^{*})\right| =\left| M_{-i}^{P}(a)\right|\). Let \(m_{-i}\in M_{-i}^{P}(a_{i}^{*})\). We define \(m_{-i}^{\prime }\) such that the elements \(a_{i}^{*}\) in \(m_{-i}\) are replaced by a and the elements a in \(m_{-i}\) are replaced by \(a_{i}^{*}\). Then \(m_{-i}^{\prime }\in M_{-i}^{P}(a)\) and \(S(\gamma \left( a_{i}^{*}\right) ,m_{-i})\setminus \{a_{i}^{*}\}=S(\gamma \left( a\right) ,m_{-i}^{\prime })\setminus \{a\}\). If \(a_{i}^{*},a\in S(\gamma \left( a_{i}^{*}\right) ,m_{-i})\), then \(S(\gamma \left( a_{i}^{*}\right) ,m_{-i})=S(\gamma \left( a\right) ,m_{-i}^{\prime })\) and thus \(U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,m_{-i}\right) =U_{i}^{f}\left( \gamma \left( a\right) ,m_{-i}^{\prime }\right)\). On the other hand, if \(a_{i}^{*}\in S(\gamma \left( a_{i}^{*}\right) ,m_{-i})\) and \(a\notin S(\gamma \left( a_{i}^{*}\right) ,m_{-i})\), then \(a\in S(\gamma \left( a\right) ,m_{-i}^{\prime })\), \(a_{i}^{*}\notin S(\gamma \left( a\right) ,m_{-i}^{\prime })\) and thus \(U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,m_{-i}\right) >U_{i}^{f}\left( \gamma \left( a\right) ,m_{-i}^{\prime }\right)\). These two facts are because of the equal probability tie-breaking rule. Since \(\left| M_{-i}^{P}(a_{i}^{*})\right| =\left| M_{-i}^{P}(a)\right|\), we have \(U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\mathrm {m} _{-i}^{s}\left( a_{i}^{*}\right) \right) \ge U_{i}^{f}\left( \gamma \left( a\right) ,\mathrm {m}_{-i}^{s}\left( a\right) \right)\) for all \(s\in \left\{ 1,\cdots ,\theta _{i}\right\}\).

Finally, we show that

$$\begin{aligned} U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\mathrm {m} _{-i}^{t}\left( a_{i}^{*}\right) \right) >U_{i}^{f}\left( \gamma \left( a\right) ,\mathrm {m}_{-i}^{t}\left( a\right) \right) \end{aligned}$$

for some \(t\in \left\{ 1,\ldots ,\theta _{i}\right\}\). First, suppose that n is odd. Let \(\hat{m}_{-i}\) satisfy (24). In this case, \(U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\hat{m}_{-i}\right) >U_{i}^{f}\left( \gamma \left( a\right) ,\hat{m}_{-i}\right)\). Second, suppose that n is even. Let \(\tilde{m}_{-i}\) satisfy (25). We have

$$\begin{aligned} U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\tilde{m}_{-i}\right) = \frac{u_{i}\left( a_{i}^{*}\right) +u_{i}\left( a\right) }{2}>u\left( a\right) =U_{i}^{f}\left( \gamma \left( a\right) ,\tilde{m}_{-i}\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} U_{i}^{f}\left( \gamma \left( a_{i}^{*}\right) ,\mathrm {m} _{-i}^{t}\left( a_{i}^{*}\right) \right) >U_{i}^{f}\left( \gamma \left( a\right) ,\mathrm {m}_{-i}^{t}\left( a\right) \right) \end{aligned}$$

for some \(t\in \left\{ 1,\ldots ,\theta _{i}\right\}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okumura, Y. Rank-dominant strategy and sincere voting. Theory Decis 90, 117–145 (2021). https://doi.org/10.1007/s11238-020-09771-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-020-09771-3

Keywords

Navigation