Skip to main content
Log in

The origin and development of the acidity function

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

The acidity function is a thermodynamic quantitative measure of acid strength for non-aqueous and concentrated aqueous Brønsted acids, with acid strength being defined as the extent to which the acid protonates a base of known basicity. The acidity function, which was developed, both theoretically and experimentally, by Louis P. Hammett of Columbia University during the 1930s, has proven useful in the area of physical organic chemistry where it has been used to correlate rates of acid-catalyzed reactions and to quantitate the acidity of superacids, acids with protonating abilities greater than pure sulfuric acid. All Brønsted acids can now be compared using a common measure. Karl Popper’s seminal idea of theory falsification does not apply here because of the many successful applications of the acidity function. Likewise, Thomas Kuhn’s idea of a paradigm shift does not apply here, even though the acidity function concept was revolutionary, because the acidity function is commensurate with classical concepts of acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnett, E.M.: Quantitative comparisons of weak organic bases. In: Cohen, S.G., Streitwieser, A., Jr. (eds.) Progress in Physical Organic Chemistry, vol. 1, pp. 223–403. Interscience, New York (1963)

    Chapter  Google Scholar 

  • Arnett, E.M., Scorrano, G.: Protonation and solvation in strong acids. In: Gold, V., Bethell, D. (eds.) Advances in Physical Organic Chemistry, vol. 13, pp. 83–163. Academic, New York (1976)

    Google Scholar 

  • Beans, H., Hammett, L.P.: Experimental studies on the hydrogen electrode. J. Am. Chem. Soc. 47, 1215–1226 (1925). doi:10.1021/ja01682a003

    Article  Google Scholar 

  • Bell, R.P.: Acids and Bases—Their Quantitative Behavior. Metheuen, London (1969)

    Google Scholar 

  • Bell, R.P.: The Proton in Chemistry, 2nd edn. Cornell, Ithica (1973)

    Google Scholar 

  • Bird, A.: Thomas Kuhn. Princeton, Princeton (2000)

    Google Scholar 

  • Brock, W.H.: The Norton History of Chemistry. Norton, New York (1992)

    Google Scholar 

  • Brønsted, J.N.: The Conception of Acids and Bases. Rec. Trav. Chim. Pay-Bas 42, 718–728 (1923)

    Google Scholar 

  • Brønsted, J.N.: Acid–base function of molecules and its dependency on the electric charge type. J. Phys. Chem. 30, 777–790 (1926). doi:10.1021/j150264a007

    Article  Google Scholar 

  • Conant, J.B., Hall, N.F.: A study of superacidic solutions. II. A chemical investigation of the hydrogen-ion activity of acetic acid solutions. J. Am. Chem. Soc. 49, 3062–3076 (1927). doi:10.1021/ja01411a011

    Article  Google Scholar 

  • Fărcaşiu, D., Ghenciu, A.: Determination of acidity functions and acid strengths by 13C NMR. In: Emsley, J.W., Feeney, J., Sutcliffe, L.H. (eds.) Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 29, pp. 129–168. Elsevier, Amsterdam (1996)

    Google Scholar 

  • Godfrey-Smith, P.: Theory and Reality. University of Chicago, Chicago (2003)

    Google Scholar 

  • Hall, N.F., Conant, J.B.: A study of superacid solutions. I. The use of the chloranil electrode in glacial acetic acid and the strength of certain weak bases. J. Am. Chem. Soc. 49, 3047–3061 (1927). doi:10.1021/ja01411a010

    Article  Google Scholar 

  • Hammett, L.P.: The theory of acidity. J. Am. Chem. Soc. 50, 2666–2673 (1928). doi:10.1021/ja01397a011

    Article  Google Scholar 

  • Hammett, L.P.: Reaction rates and indicator acidities. Chem. Rev. 16, 67–79 (1935). doi:10.1021/cr60053a006

    Article  Google Scholar 

  • Hammett, L.P., Deyrup, A.J.: A series of simples base indicators. I. The acidity functions of mixtures of sulfuric and perchloric acids with water. J. Am. Chem. Soc. 54, 2721–2739 (1932). doi:10.1021/ja01346a015

    Article  Google Scholar 

  • Hammett, L.P., Paul, M.A.: A series of simple base indicators. III. The zero point of the acidity function scale. J. Am. Chem. Soc. 56, 827–829 (1934a). doi:10.1021/ja01319a017

    Article  Google Scholar 

  • Hammett, L.P., Paul, M.A.: The relation between the rates of some acid catalyzed reactions and the acidity function Ho. J. Am. Chem. Soc. 56, 830–832 (1934b). doi:10.1021/ja01319a018

    Article  Google Scholar 

  • Hantzsch, A.: The constitution of acids and salts and their chemical changes in solution. Z. Phys. Chem. 134, 406–412 (1928)

    Google Scholar 

  • Hershberg, J.G.: James B. Conant—Harvard to Hiroshima and the Making of the Nuclear Age. Stanford, Stanford (1993)

    Google Scholar 

  • Johnson, C.D., Katritzky, A.R., Shakir, N., Viney, M.: The mechanism of the electrophilic substitution of heteroaromatic compounds. Part VIII. The α-, β- and γ-nitration of pyridine 1-oxides. J. Chem. Soc. B, 1213–1219 (1967) doi:10.1039/j29670001213

  • Johnson, K.E., Pagni, R.M., Bartmess, J.: Brønsted acids in ionic liquids: fundamentals, organic reactions and comparisons. Monatsh. Chem. 138, 1077–1101 (2007). doi:10.1007/s00706-007-0755-6

    Article  Google Scholar 

  • Koppel, I.A., Burk, P., Koppel, I., Leito, I., Sonoda, T., Mishima, M.: Gas-phase acidities of some neutral brønsted superacids: a DFT and ab initio study. J. Am. Chem. Soc. 122, 5114–5124 (2000). doi:10.1021/ja0000753

    Article  Google Scholar 

  • Kuhn, T.S.: The Structure of Scientific Revolutions, 3rd edn. University of Chicago, Chicago (1996)

    Google Scholar 

  • Long, F.A., Paul, M.A.: Application of the H o acidity function to kinetics and mechanisms of acid catalysis. Chem. Rev. 57, 935–1010 (1957). doi:10.1021/cr50017a003

    Article  Google Scholar 

  • Ma, M., Johnson, K.E.: Carbocation formation by selected hydrocarbons in trimethylsulfoniun bromide-AlCl3/AlBr3–HBr ambient temperature molten salts. J. Am. Chem. Soc. 117, 7791–7800 (1995). doi:10.1021/ja00134a026

    Article  Google Scholar 

  • Newton-Smith, W.H.: The Rationality of Science. Routledge & Kegan Paul, Boston (1981)

    Google Scholar 

  • Olah, G.A., Prakash, G.K.S., Sommer, J.: Superacids. Wiley, New York (1985)

    Google Scholar 

  • Pagni, R.M.: Multiply charged carbocations and related species in solution. Tetrahedron 40, 4161–4215 (1984). doi:10.1016/S0040-4020(01)98795-2

    Article  Google Scholar 

  • Paul, M.A., Long, F.A.: H o and related indicator acidity functions. Chem. Rev. 57, 1–45 (1957). doi:10.1021/cr50013a001

    Article  Google Scholar 

  • Popper, K.R.: The Logic of Scientific Discovery, 2nd edn. Harper, New York (1968)

    Google Scholar 

  • Rigden, J.S.: Hydrogen: The Essential Element. Harvard, Cambridge (2003)

    Google Scholar 

  • Rochester, C.: Acidity Functions. Academic, New York (1970)

    Google Scholar 

  • Smith, G.P., Dworkin, A.S., Pagni, R.M., Zingg, S.P.: Brønsted superacidity of HCl in a liquid chloroaluminate: AlCl3/1-Ethyl-3-methyl-1H-imidazolium chloride (55.0 m/o AlCl3). J. Am. Chem. Soc. 111, 525–530 (1989a). doi:10.1021/ja00184a020

    Article  Google Scholar 

  • Smith, G.P., Dworkin, A.S., Pagni, R.M., Zingg, S.P.: Quantitative study of the acidity of HCl in a molten chloroaluminate system (AlCl3/1-Ethyl-3-methyl-1H-imidazolium chloride) as a function of HCl pressure and melt composition (51.0–66.4 mol% AlCl3). J. Am. Chem. Soc. 111, 5075–5077 (1989b). doi:10.1021/ja00196a009

    Article  Google Scholar 

  • Staudinger, H., Hammett, L.: Aliphatic diazo comounds. XXI. The constitution of hydrazones, especially of mesoxalic ester hydrazone. Helv. Chim. Acta 4, 217–228 (1921). doi:10.1002/hlca.19210040119

    Article  Google Scholar 

  • Staudinger, H., Hammett, L., Siegwart, J.: Aliphatic diazo compounds. XXII. The reduction of diazoacetic ester. Helv. Chim. Acta 4, 228–238 (1921). doi:10.1002/hlca.19210040120

    Article  Google Scholar 

  • Westheimer, F.H.: Louis Plack Hammett. books.nap.edu/html/biomems/hammett.html (1987)

  • Weyrich, O.R.: Computer applications to the study of the thermodynamics of coal liquid interactions and to the study of weak organic bases. Dissertation, University of Tennessee (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Martin Pagni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagni, R.M. The origin and development of the acidity function. Found Chem 11, 43–50 (2009). https://doi.org/10.1007/s10698-009-9065-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-009-9065-x

Keywords

Navigation