Skip to main content

Communication Among Soil Bacteria and Fungi

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Bacteria and fungi are two phylogenetically distinct groups of microorganisms. Both of them play essential role in the recycling of nutrients in the ecosystem as decomposers of dead organic materials. They often share the same ecological niche like soil where they live in close proximity to each other. In this environment, microbes are exposed to many signaling molecules produced by others, they perceive, interpret these chemical signals, and change their gene expression, consequently their behaviour as a response.

This issue deals with the possible communication strategies between bacteria and fungi causing antagonistic or symbiotic interactions among them. Quorum sensing signals originally described as form of communication between microbiological communities are not the subject of this issue; however, increasing number of results evidence that they can serve as cross-kingdom signals as well (Hughes and Sperandio, Nat Rev Microbiol 6:111–120, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Morrissey JP, Marquez PC, Sheehan MM, Delany IR, O’Gara F (2002) Characterization of interactions between the transcriptional repressor PhlF and its binding site at the phlA promoter in Pseudomonas fluorescens F113. J Bacteriol 184:3008–3016

    Article  PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Barbieri E, Potenza L, Rosshi I, Sisti D, Giomaro G, Rossetti S, Beimfohr C, Stocchi V (2000) Phylogenetic characterization and in situ detection of a Cytophaga-Flexibacter-Bacteroides phylogroup bacterium in Tuber borchii Vittad. ectomycorrhizal mycelium. Appl Environ Microbiol 66:5035–5042

    Article  PubMed  CAS  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69(7): 4243–4248

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66(10):4503–4509

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen. nov., sp nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124

    Article  PubMed  CAS  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70(6):3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Brown ME (1973) Soil bacteriostasis limitation in growth of soil and rhizosphere bacteria. Can J Microbiol 19:195–199

    Article  PubMed  CAS  Google Scholar 

  • Buscot F (1994) Ectomycorrhizal types and endobacteria associated with ectomycorrhizas of Morchella elata (Fr.) Boudier with Picea abies (L.) Karst. Mycorrhiza 4(5):223–232

    Article  Google Scholar 

  • Carpenter-Boggs I, Loynachan’t TE, Stahl PD (1995) Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated Actinomycetes. Soil Biol Biochem 27(11):1445–1451

    Article  CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61(5):1720–1726

    PubMed  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter from Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:302–308

    Google Scholar 

  • Cox CD, Adams P (1985) Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun 48:130–138

    PubMed  CAS  Google Scholar 

  • Cromack K, Caldwell BA (1981) The role of fungi in litter decomposition and nutrient cycling. In: Carroll GC, Wicklow DT (eds) The Fungal community: its organization and role in the ecosystem. Marcel Dekker, New York, pp 653–668

    Google Scholar 

  • Cullen D, Kersten P (1992) Fungal enzymes for lignocellulose degradation. In: Kinghorn JR, Turner G (eds) Applied molecular genetics of filamentous fungi. Chapman and Hall, London, pp 100–131

    Chapter  Google Scholar 

  • Davies J, Spiegalman GB, Yim G (2006) The world of subinhibitory antibiotic concentration. Curr Opinion Microbiol 9:445–453

    Article  CAS  Google Scholar 

  • De Boer W, Klein Gunnewiek PJA, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30(2):193–203

    Article  Google Scholar 

  • de Boer W, Verheggen P, Klein Gunnewiek PJA, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69(2):835–844

    Article  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal word: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  Google Scholar 

  • Dewey FM, Li Wong Y, Seery R, Hollins TW, Gurr SJ (2002) Bacteria associated with Stagonospora (Septoria) nodorum increase pathogenicity of the fungus. New Phytol 144(3):489–497

    Article  Google Scholar 

  • Dobbs CG, Hinson WH (1953) A widespread fungistasis in soil. Nature 172:197–199

    Article  PubMed  CAS  Google Scholar 

  • Dunne C, Moënne-Loccoz Y, de Bruijn FJ, O’Gara F (2000) Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069–2078

    PubMed  CAS  Google Scholar 

  • Duponnois R, Kisa M (2006) The possible role of trehalose in mycorrhiza helper bacterium effect. Can J Bot 84:1005–1008

    Article  Google Scholar 

  • El-Tarabily KA, Sykes ML, Kurtböke ID, GEStJ H, Barbosa AM, Dekker RFH (1996) Synergistic effects of a cellulase-producing Micromonospora carbonacea and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can J Bot 74:618–624

    Article  Google Scholar 

  • Fedi S, Tola E, Moenne-Loccoz Y, Dowling DN, Smith LM, O’Gara F (1997) Evidence for signaling between the phytopathogenic fungus Pythium ultimum and Pseudomonas fluorescens F113: P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness. Appl Environ Microbiol 63(11):4261–4266

    PubMed  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36

    Article  PubMed  CAS  Google Scholar 

  • Gaballa A, Abeysinghe PD, Urich G, Matthijs S, De Greve H, Cornelis P, Koedam N (1997) Trehalose induces antagonism towards Pythium debaryanum in Pseudomonas fluorescens ATCC 17400. Appl Environ Microbiol 63(11):4340–4345

    PubMed  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  PubMed  CAS  Google Scholar 

  • Gavini F, Mergaert J, Beji A, Mielcarek C, Izard D, Kersters K, De Ley J (1989) Transfer of Enterobacter agglomerans (Beijerinck 1988) Ewing and Fife, 1972 to Pantoea gen. nov. as Pantoea agglomerans comb. nov. and description of Pantoea dispersa sp. nov. Int J Syst Bacteriol 39:337–345

    Article  Google Scholar 

  • Gehrig H, Schüßler A, Kluge M (1996) Geosiphon pyriformis, a fungus forming endocytobiosis with Nostoc (cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81

    Article  PubMed  CAS  Google Scholar 

  • Goh E-B, Yim G, Tsui W, McClure JA, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99(26):17025–17030

    Article  PubMed  CAS  Google Scholar 

  • Hansen EH, Schembri MA, Klemm P, Schäfer T, Molin S, Gram L (2004) Elucidation of the antibacterial mechanism of the Curvularia haloperoxidase system by DNA microarray profiling. Appl Environ Microbiol 70(3):1749–1757

    Article  PubMed  CAS  Google Scholar 

  • Harrison JG (1983) Growth of lesions caused by Botrytis fabae on field bean leaves in relation to foliar bacteria, non-enzymic phytotoxins, pectic enzymes and osmotica. Ann Botany 52:823–838

    CAS  Google Scholar 

  • Hong T-Y, Meng M (2003) Biochemical characterization and antifungal activity of an endo-1, 3-b-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol 61:472–478

    PubMed  CAS  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    Article  PubMed  CAS  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006) Endobacteria in some ectomycorrhiza of Scots pine (Pinus sylvestris). FEMS Microbiol Ecol 56(1):34–43

    Article  PubMed  CAS  Google Scholar 

  • Kluge M (2002) A fungus eats a cyanobacterium: the story of the Geosiphon pyriformis endocyanosis. Biol Environ: Proc R Ir Acad 102B(1):11–14

    Article  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254

    Article  PubMed  Google Scholar 

  • Lang E, Kleeberg I, Zadrazil F (1997) Competition of Pleurotus sp. and Dichomitus squalens with soil microorganisms during lignocellulose decomposition. Bioresour Technol 60(2):95–99

    Article  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103(51):19484–19489

    Article  PubMed  CAS  Google Scholar 

  • Matthijs S, Koedam N, Cornelis P, De Greve H (2000) The trehalose operon of Pseudomonas fluorescens ATCC 17400. Res Microbiol 151(10):845–851

    Article  PubMed  CAS  Google Scholar 

  • Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Thioquinolobactin, a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9(2):425–434

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990–1998

    Article  PubMed  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67(2):725–732

    Article  PubMed  CAS  Google Scholar 

  • Newton AC, Toth IK (2002) Helper bacteria and pathogenicity assessments. New Phytol 144(3):385–386

    Article  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M, Hertweck C (2007) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 57:2583–2590

    Article  PubMed  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestrisLactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Remy WT, Taylor N, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhiza. Proc Nat Acad Sci USA 9:11841–11843

    Article  Google Scholar 

  • Retallack GJ (1994) Were the Ediacaran fossils lichens? Paleobiology 20(4):523–544

    Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (1999) Identification of a putative P-transporter operon in the genome of a Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita. J Bacteriol 181:4106–4109

    PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (2000) Intracellular Burkholderia of the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microb Ecol 39:137–144

    Article  PubMed  CAS  Google Scholar 

  • Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6(6):481–485

    Article  Google Scholar 

  • Sen P, Chatterjee G, Kumar PM, Sen SK (1986) Enhancement of attachment of Agrobacterium tumefaciens to plant cell surface results in increase in genetic transformation. J Exp Biol 24:153–155

    CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Sindhu SS, Dadarwal KR (2001) Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. Microbiol Res 156(4):353–358

    Article  PubMed  CAS  Google Scholar 

  • Thorn RG, Tsuneda A (1992) Interactions between various wood-dacaying fungi and bacteria: antibiosis, attack, lysis, and inhibition. Rept Tottori Mycol Inst 30:13–20

    Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40

    Article  PubMed  CAS  Google Scholar 

  • van Dijk K, Nelson EB (2000) Fatty acid competition as a mechanism by which Enterobacter cloacae suppresses Pythium ultimum sporangium germination and damping-off. Appl Environ Microbiol 66:5340–5347

    Article  PubMed  Google Scholar 

  • Varma A, Chincholkar S (2007) Microbial siderophores. Springer, Berlin

    Book  Google Scholar 

  • Valois D, Fayad K, Barasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. Appl Environ Microbiol 62(5):1630–1635

    PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Yuen GY (2000) The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90(4):384–389

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Pfeiffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfeiffer, I. (2011). Communication Among Soil Bacteria and Fungi. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_17

Download citation

Publish with us

Policies and ethics