Skip to main content
Log in

Glimmers of a Pre-geometric Perspective

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Spacetime measurements and gravitational experiments are made by using objects, matter fields or particles and their mutual relationships. As a consequence, any operationally meaningful assertion about spacetime is in fact an assertion about the degrees of freedom of the matter (i.e. non gravitational) fields; those, say for definiteness, of the Standard Model of particle physics. As for any quantum theory, the dynamics of the matter fields can be described in terms of a unitary evolution of a state vector in a Hilbert space. By writing the Hilbert space as a generic tensor product of “subsystems” we analyse the evolution of a state vector on an information theoretical basis and attempt to recover the usual spacetime relations from the information exchanges between these subsystems. We consider generic interacting second quantized models with a finite number of fermionic degrees of freedom and characterize on physical grounds the tensor product structure associated with the class of “localized systems” and therefore with “position”. We find that in the case of free theories no spacetime relation is operationally definable. On the contrary, by applying the same procedure to the simple interacting model of a one-dimensional Heisenberg spin chain we recover the tensor product structure usually associated with “position”. Finally, we discuss the possible role of gravity in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbs, P.: The small scale structure of spacetime: a bibliographical review. arXiv:hep-th/9506171

  2. Bousso, R.: The holographic principle for general backgrounds. Class. Quantum Gravity 17, 997 (2000). arXiv:hep-th/9911002

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Einstein, A.: On the electrodynamics of moving bodies. The collected papers, vol. 2. Ann. Phys. 17, 891 (1905)

    Article  Google Scholar 

  4. Haag, R.: Fundamental irreversibility and the concept of events. Commun. Math. Phys. 132, 245 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Everett, H. III: The theory of the universal wavefunction. In: DeWitt, B., Graham, R. (eds.) The Many-Worlds Interpretation of Quantum Mechanics. Princeton Series in Physics. Princeton University Press, Princeton (1973). Princeton PhD thesis

    Google Scholar 

  6. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  7. Zanardi, P.: Virtual quantum subsystems. Phys. Rev. Lett. 87, 077901 (2001). arXiv:quant-ph/0103030

    Article  ADS  Google Scholar 

  8. Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996). arXiv:quant-ph/9609002

    Article  MATH  MathSciNet  Google Scholar 

  9. Zurek, W.H.: Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  10. Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  11. Deutsch, D.: Quantum theory as a universal physical theory. Int. J. Theor. Phys. 24, 1 (1985)

    Article  MathSciNet  Google Scholar 

  12. Mermin, N.D.: What is quantum mechanics trying to tell us? Am. J. Phys. 66, 753 (1998). arXiv:quant-ph/9801057

    Article  ADS  Google Scholar 

  13. Poulin, D.: A relational formulation of quantum theory. arXiv:quant-ph/0505081 (2005)

  14. Rovelli, C.: “Incerto tempore, incertisque loci”: Can we compute the exact time at which a quantum measurement happens? Found. Phys. 28, 1031 (1998). arXiv:quant-ph/9802020

    Article  MathSciNet  Google Scholar 

  15. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74, 197 (2002). arXiv:quant-ph/0102094

    Article  MathSciNet  ADS  Google Scholar 

  16. Adami, C.: The physics of information. arXiv:quant-ph/0405005 (2004)

  17. Vidal, G., Verner, R.F.: Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  18. Hossein Partovi, M.: Phys. Rev. Lett. 92, 077904 (2004)

    Article  Google Scholar 

  19. Heydari, H., Björk, G.: J. Phys. A 37, 9251 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Wheeler, J.A.: It from bit. In: Zurek, W.H. (ed.) Complexity, Entropy and the Physics of Information. Addison-Wesley, Reading

  21. Kempf, A.: A covariant information-density cutoff in curved space-time. Phys. Rev. Lett. 92, 221301 (2004). arXiv:gr-qc/0310035

    Article  MathSciNet  ADS  Google Scholar 

  22. Kempf, A.: On fields with finite information density. Phys. Rev. D 69, 124014 (2004). arXiv:hep-th/0404103

    Article  ADS  Google Scholar 

  23. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: On the volume of the set of mixed entangled states. Phys. Rev. A 58, 883 (1998). arXiv:quant-ph/9804024

    Article  MathSciNet  ADS  Google Scholar 

  24. Page, D.N., Wootters, W.K.: Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  25. Page, D.N.: Time as an Inaccessible Observable. Report NSF-ITP-89-18, University of California at S. Barbara (1989)

  26. Banks, T.: TCP, quantum gravity, the cosmological constant and all that…Nucl. Phys. B 243, 125 (1984)

    Article  ADS  Google Scholar 

  27. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  28. Zanardi, P.: Quantum entanglement in fermionic lattices. Phys. Rev. A 65 042101. arXiv:quant-ph/0104114

  29. Froggatt, C.D., Nielsen, H.B.: Derivation of Lorentz invariance and three space dimensions in generic field theory. In: Bled 2000–2002, What Comes Beyond the Standard Model, vol. 2, p. 1 (2002). arXiv:hep-ph/0211106

  30. Froggatt, C.D., Nielsen, H.B.: Derivation of Poincare invariance from general quantum field theory. arXiv:hep-th/0501149

  31. Fradkin, E.: Field Theories of Condensed Matter Systems. Ed. Perseus Books, Cambridge (1991)

    MATH  Google Scholar 

  32. Sakharov, A.D.: Vacuum fluctuations in curved space and the theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968), also Gen. Relativ. Gravit. 32, 365 (2000)

    ADS  Google Scholar 

  33. Adler, S.L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729 (1982)

    Article  ADS  Google Scholar 

  34. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Amati, D., Veneziano, G.: Metric from matter. Phys. Lett. B 105, 358 (1981)

    Article  ADS  Google Scholar 

  36. Amati, D., Veneziano, G.: A unified gauge and gravity theory with only matter fields. Nucl. Phys. B 204, 451 (1982)

    Article  ADS  Google Scholar 

  37. Barcelo, C., Liberati, S., Visser, M.: Analogue gravity. arXiv:gr-qc/0505065 (2005)

  38. Volovik, G.E.: Superfluid analogies of cosmological phenomena. Phys. Rep. 351, 195 (2001). arXiv:gr-qc/0005091

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Volovik, G.E.: The Universe in a Helium Droplet. Clarendon, Oxford (2003)

    MATH  Google Scholar 

  40. Volovik, G.E.: Vacuum energy: quantum hydrodynamics vs quantum gravity. arXiv:gr-qc/0505104

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Piazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piazza, F. Glimmers of a Pre-geometric Perspective. Found Phys 40, 239–266 (2010). https://doi.org/10.1007/s10701-009-9387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9387-5

Navigation