Skip to main content
Log in

Time asymmetries in classical and in nonclassical physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A comparative study is made of the eigenvalue problems of electromagnetics and quantum mechanics, with special reference to the operations of spatial inversionP and time inversionT. Electromagnetics, which permits closer agreement with the dictates of relativity (when the latter is extended toP andT), exhibits characteristic differences with respect to quantum mechanics. An evaluation of these distinctions is presented against the backdrop of a choice between absolute scalar action and charge versus pseudoscalar action and charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hargreaves,Cambr. Phil. Trans. 21, 107 (1908).

    Google Scholar 

  2. H. Minkowski, in H. A. Lorentzet al., The Principle of Relativity (Dover, New York).

  3. J. A. Wheeler, Superspace and the Nature of Quantum Geometrodynamics, inBattelle Rencontres, de Witt and Wheeler, eds. (Benjamin, New York, 1968).

    Google Scholar 

  4. E. P. Wigner,Göttinger Nachrichten Math. Phys. K. 31, 546 (1932);Group Theory (augmented translation of German edition of 1931; Academic Press, New York, 1959).

    Google Scholar 

  5. F. A. Kaempffer,Concepts in Quantum Mechanics (Academic Press, New York, 1965).

    Google Scholar 

  6. E. Merzbacher,Quantum Mechanics (Wiley, New York, 1st ed., 1962; 2nd ed., 1970).

    Google Scholar 

  7. J. H. Christensen, J. W. Cronin, V. L. Fitch, and R. Turley,Phys. Rev. Lett. 13, 138 (1964).

    Google Scholar 

  8. R. R. Birss,Symmetry and Magnetism (North-Holland, Amsterdam, 1964).

    Google Scholar 

  9. S. Watanabe,Rev. Mod. Phys. 27, 26 (1955).

    Google Scholar 

  10. C. Truesdell and R. A. Toupin,Handbuch der Physik, Vol. III/I (Springer, Berlin, 1960), pp. 666, 682.

    Google Scholar 

  11. E. J. Post, (a)Found. Phys. 7, 255 (1977);

    Google Scholar 

  12. E. J. Post, (b)Found. Phys. 8, 277 (1978).

    Google Scholar 

  13. R. M. Kiehn,Found. Phys. 7, 301 (1977).

    Google Scholar 

  14. H. Weyl,The Theory of Groups and Quantum Mechanics (Dover, New York).

  15. E. P. Wigner,Z. Physik 40, 492 (1926);40, 883 (1927).

    Google Scholar 

  16. Volker Heine,Group Theory in Quantum Mechanics (Pergamon Press, London, 1960), Chapter I, pp. 41–44.

    Google Scholar 

  17. C. J. Bradley and A. P. Cracknell,The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972).

    Google Scholar 

  18. E. J. Post,The Formal Structure of Electromagnetics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  19. E. J. Post,Rev. Mod. Phys. 39, 475 (1967).

    Google Scholar 

  20. H. A. Kramers,Proc. Amst. Ac. 33, 959 (1930).

    Google Scholar 

  21. B. L. van der Waerden,Group Theory and Quantum Mechanics (Springer, Berlin, 1974).

    Google Scholar 

  22. L. L. Foldy, and S. A. Wouthuysen,Phys. Rev. 78, 29 (1958).

    Google Scholar 

  23. L. I. Schiff,Quantum Mechanics (McGraw-Hill, New York, 1955).

    Google Scholar 

  24. E. P. Wigner,Rev. Mod. Phys. 29, 255 (1957).

    Google Scholar 

  25. J. Schwinger,Phys. Rev. 82, 914 (1951); cf. Section III, first column, p. 925.

    Google Scholar 

  26. A. Lichnerowicz,Ann. Inst. Henri Poincaré 1, 233 (1964); cf. Section IV, p. 279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Post, E.J. Time asymmetries in classical and in nonclassical physics. Found Phys 9, 831–863 (1979). https://doi.org/10.1007/BF00708696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708696

Keywords

Navigation