Skip to main content
Log in

Majorana: From Atomic and Molecular, to Nuclear Physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In the centennial of Ettore Majorana’s birth (1906–1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi’s solution of the celebrated Thomas–Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana’s seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg–Majorana forces) in his later works on theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majorana E. (1932). “Teoria relativistica di particelle con momento intrinseco arbitrario”. Nuovo Cimento 9, 335

    MATH  Google Scholar 

  2. Majorana E. (1933). “Über die Kerntheorie”. Z. Physik 82, 137

    Article  MATH  ADS  Google Scholar 

  3. Majorana E. (1937). “Teoria simmetrica dell’elettrone e del positrone”. Nuovo Cimento 14, 171

    MATH  Google Scholar 

  4. Amaldi E., “Ettore Majorana: Man and scientist,” in Strong and Weak Interactions. Present problems, A. Zichichi, ed. (Academic, New York, 1966), p.10

  5. P. Sapienza for the NEMO collaboration, “A km3 detector in the Mediterranean: status of NEMO,” Nucl. Phys. B: Proc. Suppl. 145, 331 (2005).

  6. A. Bettini, Fisica subnucleare (Università degli Studi di Padova, Padova, 2004), available at http://www.pd.infn.it/~bettini.

  7. E. Majorana, “Ricerca di un’espressione generale delle correzioni di Rydberg, valevole per atomi neutri o ionizzati positivamente,” Nuovo Cimento 6, xiv (1929).

  8. Majorana E. (1931). “Sulla formazione dello ione molecolare di He”. Nuovo Cimento 8, 22

    Article  MATH  Google Scholar 

  9. Amaldi E. (1968). “Ricordo di Ettore Majorana”. Giornale di Fisica 9, 300

    Google Scholar 

  10. B. Preziosi, ed., Ettore Majorana: Lezioni all’Università di Napoli (Bibliopolis, Napoli, 1987).

  11. Bonolis L. (2002). Majorana, il genio scomparso. Le Scienze, Milano

    Google Scholar 

  12. E. Recami, “Catalog of the scientific manuscripts left by Ettore Majorana (with a recollection of E. Majorana, sixty years after his disappearance),” Quaderni di Storia della Fisica del Giornale di Fisica 5, 19 (1999), also available as preprint arXiv:physics/9810023.

  13. Thomas L.H. (1926). “The calculation of atomic fields” . Proc. Camb. Philos. Soc. Mathe. Phys. Sci. 23, 542

    Google Scholar 

  14. Fermi E. (1927). “Un metodo statistico per la determinazione di alcune proprietà dell’atomo”. Rendiconti dell’Accademia Nazionale dei Lincei 6, 602

    Google Scholar 

  15. Fermi E. (1928). “Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente”. Z. Physik 48, 73

    Article  MATH  ADS  Google Scholar 

  16. March N.H. (1975). Self-Consistent Fields in Atoms. Pergamon, Oxford

    Google Scholar 

  17. Pucci R. (1986). “Nuove metodologie comuni tra fisica e chimica teorica: la teoria del funzionale della densità”. Giornale di Fisica 27, 256

    Google Scholar 

  18. Sommerfeld A. (1932). “Integrazione asintotica dell’equazione differenziale di Thomas-Fermi”. Rend. R. Accademia dei Lincei 15, 293

    Google Scholar 

  19. Esposito S. (2002). “Majorana solution of the Thomas-Fermi equation”. Am. J. Phys. 70, 852

    Article  ADS  Google Scholar 

  20. Esposito S., Majorana E. Jr., van der Merwe A., Recami E. (2003). Ettore Majorana: Notes on Theoretical Physics. Kluwer Academic, New York

    MATH  Google Scholar 

  21. Di Grezia E., Esposito S. (2004). “Fermi, Majorana and the statistical model of atoms”. Found. Phys. 34: 1431

    Article  MATH  ADS  Google Scholar 

  22. F. Guerra and N. Robotti, “A forgotten publication of Ettore Majorana on the improvement of the Thomas-Fermi statistical model,” (2005), preprint arXiv:physics/0511222.

  23. E. Fermi, “Sui momenti magnetici dei nuclei atomici,” Mem. Acad. Italia (Fis.) I, 139 (1930).

  24. S. Esposito, “Again on Majorana and the Thomas-Fermi model: a comment to arXiv:physics/0511222,” (2005), preprint arXiv:physics/0512259.

  25. Flügge S. (1974). Practical Quantum Mechanics. Springer, New York

    MATH  Google Scholar 

  26. Fermi E., Amaldi E. (1934). “Le orbite ∞ s degli elementi”. Mem. Accad. Italia (Fis.) 6, 119

    MATH  Google Scholar 

  27. Pucci R., March N.H. (1982). “Some moments of radial electron density in closed-shell atoms and their atomic scattering factors”. J. Chem. Phys. 76: 4089

    Article  ADS  Google Scholar 

  28. Heitler W., London F. (1927). “Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik”. Z. Physik 44, 455

    Article  MATH  ADS  Google Scholar 

  29. Hund F. (1928). “Zur Deutung der Molekenspektren. IV”. Z. Physik 51, 759

    Article  MATH  ADS  Google Scholar 

  30. Mulliken R.S., (1928). “The assignment of quantum numbers for electrons in molecules. I”. Phys. Rev. 32, 186

    Article  MATH  ADS  Google Scholar 

  31. Mulliken R.S. (1928). “The assignment of quantum numbers for electrons in molecules. II. Correlation of molecular and atomic electron states”. Phys. Rev. 32, 761

    Article  MATH  ADS  Google Scholar 

  32. Hückel E. (1930). “Zur Quantentheorie der Doppelbindung”. Z. Physik 60, 423

    Article  MATH  ADS  Google Scholar 

  33. Coulson C.A. (1952). Valence. Oxford University Press, Oxford

    Google Scholar 

  34. Hund F. (1927). “Symmetriecharaktere von Termen bei Systemen mit gleichen Partikeln in der Quantenmechanik”. Z. Physik 43, 788

    Article  MATH  ADS  Google Scholar 

  35. Wang S.C. (1928). “The problem of the normal hydrogen molecule in the new quantum mechanics”. Phys. Rev. 31, 579

    Article  MATH  ADS  Google Scholar 

  36. Pauling L. (1933). “The normal state of the helium molecule-ion \({\rm He}_2^+\) and \({\rm He}_2^{++}\)”. J. Chem. Phys. 1, 56

    Article  ADS  Google Scholar 

  37. Pauling L., Bright Wilson E. (1935). Introduction to Quantum Mechanics with Applications to Chemistry. McGraw-Hill, New York

    Google Scholar 

  38. Ackermann J., Hogreve H. (1991). “Adiabatic calculations and properties of the He +2 molecular ion”. Chem. Phys. 157, 75

    Article  Google Scholar 

  39. Reagan P.N., Browne J.C., Matsen F.A. (1963). “Dissociation energy of \({\rm He}_2^+(^2 \Sigma_u^+ )\)”. Phys. Rev. 132, 304

    Article  ADS  Google Scholar 

  40. Coman L., Guna M., Simons L., Hardy K.A. (1999). “First measurement of the rotational constants for the homonuclear molecular ion \({\rm He}_2^+\)”. Phys. Rev. Lett. 83: 2715

    Article  ADS  Google Scholar 

  41. Pauling L., Brockway L.O., Beach J.Y. (1935). “The dependence of interatomic distance on single bond-double bond resonance”. J. Am. Chem. Soc. 57: 2705

    Article  Google Scholar 

  42. Rutherford E. (1963). Collected Papers. Interscience: Wiley, New York

    Google Scholar 

  43. Bothe W., Becker H. (1930). “Künstliche Erregung von Kern-γ-Strahlen”. Z. Physik 66, 289

    Article  ADS  Google Scholar 

  44. Joliot-Curie I., Joliot F. (1932). “Èmission de protons de grande vitesse par les substances hydrogénées sous l’influence des rayons γ trés pénétrants”. Compt. Rend. 194, 273

    Google Scholar 

  45. Joliot-Curie I., Joliot F. (1932). “Projections d’atomes par les rayons trés pénétrants excités dans les noyaux légers”. Compt. Rend. 194, 876

    Google Scholar 

  46. Segrè E. (1970). Enrico Fermi, Physicist. The University of Chicago Press, Chicago

    Google Scholar 

  47. Chadwick J. (1932). “Possible existence of a neutron”. Nature 129, 312

    ADS  Google Scholar 

  48. Heisenberg W. (1932). “Über den Bau der Atomkerne”. Z. Physik. 77, 1

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Heisenberg W. (1933). “Über den Bau der Atomkerne. II”. Z. Physik. 78, 156

    Article  MATH  ADS  Google Scholar 

  50. Heisenberg W. (1933). “Über den Bau der Atomkerne. III”. Z. Physik. 80, 587

    Article  MATH  ADS  Google Scholar 

  51. Blatt J.M., Weisskopf V.F. (1952). Theoretical Nuclear Physics. Wiley, New York

    MATH  Google Scholar 

  52. Slater J.C. (1963). Quantum theory of molecules and solids, Vol 1. McGraw-Hill, New York

    MATH  Google Scholar 

  53. Dirac P.A.M. (1924). “Discussion of the infinite distribution of electrons in the theory of the positron”. Proc. Camb. Philos. Soc. Mathe. Phys. Sci. 30, 150

    Article  Google Scholar 

  54. Bransden B.H., Joachain C.J. (2003) Physics of Atoms and Molecules, 2nd edn. Prentice Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. N. Angilella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucci, R., Angilella, G.G.N. Majorana: From Atomic and Molecular, to Nuclear Physics. Found Phys 36, 1554–1572 (2006). https://doi.org/10.1007/s10701-006-9067-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9067-7

Keywords

Navigation