Skip to main content
Log in

Problems of multi-species organisms: endosymbionts to holobionts

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

The organism is one of the fundamental concepts of biology and has been at the center of many discussions about biological individuality, yet what exactly it is can be confusing. The definition that we find generally useful is that an organism is a unit in which all the subunits have evolved to be highly cooperative, with very little conflict. We focus on how often organisms evolve from two or more formerly independent organisms. Two canonical transitions of this type—replicators clustered in cells and endosymbiotic organelles within host cells—demonstrate the reality of this kind of evolutionary transition and suggest conditions that can favor it. These conditions include co-transmission of the partners across generations and rules that strongly regulate and limit conflict, such as a fair meiosis. Recently, much attention has been given to associations of animals with microbes involved in their nutrition. These range from tight endosymbiotic associations like those between aphids and Buchnera bacteria, to the complex communities in animal intestines. Here, starting with a reflection about identity through time (which we call “Theseus’s fish”), we consider the distinctions between these kinds of animal–bacteria interactions and describe the criteria by which a few can be considered jointly organismal but most cannot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed MZ et al (2015) The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11:e1004672

    Article  Google Scholar 

  • Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921

    Article  Google Scholar 

  • Beekman M, Ratnieks FLW (2003) Power over reproduction in social Hymenoptera. Phil Trans R Soc Lond B 358:1741–1753

    Article  Google Scholar 

  • Bordenstein SR, Theis KR (2015) Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol 13:e1002226

    Article  Google Scholar 

  • Bosch TC, Miller DJ (2016) The holobiont imperative: perspectives from early emerging animals. Springer, Vienna

    Book  Google Scholar 

  • Brandvain Y, Coop G (2015) Sperm should evolve to make female meiosis fair. Evolution 69:1004–1014

    Article  Google Scholar 

  • Bronstein JL (1998) The contribution of ant-plant protection studies to our understanding of mutualism. Biotropica 30:150–161

    Article  Google Scholar 

  • Bronstein JL (2015) Mutualism. Oxford University Press, Oxford

    Book  Google Scholar 

  • Brusca RC, Gilligan MR (1983) Tongue replacement in a marine fish (Lutjanus guttatus) by a parasitic isopod (Crustacea: Isopoda). Copeia 1983:813–816

    Article  Google Scholar 

  • Bull JJ, Rice WR (1991) Distinguishing mechanisms for the evolution of cooperation. J Theor Biol 149:63–74

    Article  Google Scholar 

  • Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJ (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664

    Article  Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Chapuisat M, Sundström L, Keller L (1997) Sex-ratio regulation: the economics of fratricide in ants. Proc R Soc Lond B 264:1255–1260

    Article  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23:81–90

    Article  Google Scholar 

  • Connor RC (1986) Pseudo-reciprocity: investing in mutualism. Anim Behav 34:1562–1584

    Article  Google Scholar 

  • Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350:663–666

    Article  Google Scholar 

  • Czechowski W, Godzińska E (2015) Enslaved ants: not as helpless as they were thought to be. Insect Soc 62:9–22

    Article  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  Google Scholar 

  • David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  Google Scholar 

  • Davies NB (2010) Cuckoos, cowbirds and other cheats. A&C Black, London

    Google Scholar 

  • Douglas AE (2008) Conflict, cheats and the persistence of symbioses. New Phytol 177:849–858

    Article  Google Scholar 

  • Douglas AE (2010) The symbiotic habit. Princeton University Press, Princeton

    Google Scholar 

  • Douglas AE, Werren JH (2016) Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7:e02099-15

    Article  Google Scholar 

  • Estrela S, Kerr B, Morris JJ (2016) Transitions in individuality through symbiosis. Curr Opin Microbiol 31:191–198

    Article  Google Scholar 

  • Foster KR (2011) The sociobiology of molecular systems. Nat Rev Genet 12:193–203

    Article  Google Scholar 

  • Foster KR, Wenseleers T (2006) A general model for the evolution of mutualisms. J Evol Biol 19:1283–1293

    Article  Google Scholar 

  • Godfrey-Smith P (2013) Darwinian individuals. In: Bouchard F, Huneman P (eds) From groups to individuals: evolution and emerging individuality. MIT Press, Cambridge, pp 17–36

    Google Scholar 

  • Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2010) Superorganisms and holobionts. Microbe 8:152–153

    Google Scholar 

  • Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Gen Evol 3:884–890

    Article  Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition. An Rev Ecol Evol Syst 38:621–654

    Article  Google Scholar 

  • Herre E, Knowlton N, Mueller U, Rehner S (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  Google Scholar 

  • Hester ER, Barott KL, Nulton J, Vermeij MJ, Rohwer FL (2016) Stable and sporadic symbiotic communities of coral and algal holobionts. ISME J 10:1157–1169

    Article  Google Scholar 

  • Hughes W, Oldroyd B, Beekman M, Ratnieks F (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320:1213–1216

    Article  Google Scholar 

  • Hull DL (1978) A matter of individuality. Philos Sci 45:335–360

    Article  Google Scholar 

  • Joca LK, Leray VL, Zigler KS, Brusca RC (2015) A new host and reproduction at a small size for the “snapper-choking isopod” Cymothoa excisa (Isopoda: Cymothoidae). J Crustacean Biol 35:292–294

    Article  Google Scholar 

  • Kaltenpoth M, Goettler W, Koehler S, Strohm E (2010) Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol Ecol 24:463–477

    Article  Google Scholar 

  • Khosravi A, Mazmanian SK (2013) Disruption of the gut microbiome as a risk factor for microbial infections. Cur Opin Microbiol 16:221–227

    Article  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume-Rhizobiium mutualism. Nature 425:78–81

    Article  Google Scholar 

  • Langmore N et al (2005) The evolution of egg rejection by cuckoo hosts in Australia and Europe. Behav Ecol 16:686–692

    Article  Google Scholar 

  • Leggat W et al (2007) The hologenome theory disregards the coral holobiont. Nat Rev Microbiol 5. doi:10.1038/nrmicro1635-c1

    Google Scholar 

  • Leigh EGJ (2010) The evolution of mutualism. J Evol Biol 23:2507–2528

    Article  Google Scholar 

  • Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  Google Scholar 

  • Lindholm AK et al (2016) The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol 31:315–326

    Article  Google Scholar 

  • Margulis L (1991) Symbiogenesis and symbionticism. In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation. MIT Press, Cambridge, pp 1–14

    Google Scholar 

  • Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. W. H. Freeman, Oxford

    Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    Google Scholar 

  • McNally L, Brown SP (2016) Microbiome: ecology of stable gut communities. Nat Microbiol 1:15016

    Article  Google Scholar 

  • Meyer-Abich A (1950) Beiträge zur theorie der evolution der organismen: typensynthese durch holobiose. E.J. Brill, Leiden

    Google Scholar 

  • Michod RE (1999) Darwinian dynamics: evolutionary transitions in fitness and individuality. Princeton University Press, Princeton

    Google Scholar 

  • Mikaelyan A, Dietrich C, Köhler T, Poulsen M, Sillam-Dusses D, Drune A (2015) Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mol Ecol 24:5284–5295

    Article  Google Scholar 

  • Mooring MS, Mundy PJ (1996) Interactions between impala and oxpeckers at Matobo National Park, Zimbabwe. Afr J Ecol 34:54–65

    Article  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633

    Article  Google Scholar 

  • Moran NA, Sloan DB (2015) The hologenome concept: helpful or hollow? PLoS Biol 13:e1002311

    Article  Google Scholar 

  • Moran NA, Telang A (1998) Bacteriocyte-associated symbionts of insects. Bioscience 48:295–304

    Article  Google Scholar 

  • Nunn CL, Ezenwa VO, Arnold C, Koenig WD (2011) Mutualism or parasitism? Using a phylogenetic approach to characterize the oxpecker-ungulate relationship. Evolution 65:1297–1304

    Article  Google Scholar 

  • Okasha S (2006) Evolution and the levels of selection. Oxford University Press, Oxford

    Book  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  Google Scholar 

  • Orona-Tamayo D, Wielsch N, Blanco-Labra A, Svatos A, Farías-Rodríguez R, Heil M (2013) Exclusive rewards in mutualisms: ant proteases and plant protease inhibitors create a lock–key system to protect Acacia food bodies from exploitation. Mol Ecol 22:4087–4100

    Article  Google Scholar 

  • Palmer TM, Brody AK (2013) Enough is enough: the effects of symbiotic ant abundance on herbivory, growth, and reproduction in an African acacia. Ecology 94:683–691

    Article  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    Article  Google Scholar 

  • Pamminger T, Leingärtner Achenbach A, Kleeberg I, Pennings PS, Foitzik S (2012) Geographic distirubtion of the anit-parasite trait “slave rebellion”. Evol Ecol 27:39–49

    Article  Google Scholar 

  • Parker D, Booth A (2013) The tongue-replacing isopod Cymothoa borbonica reduces the growth of largespot pompano Trachinotus botla. Mar Biol 160:2943–2950

    Article  Google Scholar 

  • Partridge L, Hurst LD (1998) Sex and conflict. Science 281:2003–2008

    Article  Google Scholar 

  • Pepper JW, Herron MD (2008) Does biology need an organism concept? Biol Rev 83:621–627

    Article  Google Scholar 

  • Pichon A, Bézier A, Urbach S, Aury J-M, Jouan V, Ravallec M, Guy J, Cousserans F, Thézé J, Gauthier J (2015) Recurrent DNA virus domestication leading to different parasite virulence strategies. Sci Adv 1:e1501150

    Article  Google Scholar 

  • Pietsch TW, Grobecker DB (1978) The compleat angler: aggressive mimicry in an antennariid anglerfish. Science 201:369–370

    Article  Google Scholar 

  • Plantan T, Howitt M, Kotzé A, Gaines M (2013) Feeding preferences of the red-billed oxpecker, Buphagus erythrorhynchus: a parasitic mutualist? Afr J Ecol 51:325–336

    Article  Google Scholar 

  • Pradeu T (2010) What is an organism? An immunological answer. Hist Philos Life Sci 32:247–268

    Google Scholar 

  • Queller DC (1997) Cooperators since life began. Review of: J. Maynard Smith and E. Szathmáry, The major transitions in evolution. Q Rev Biol 72:184–188

    Article  Google Scholar 

  • Queller DC (2000) Relatedness and the fraternal major transitions. Phil Trans R Soc B 355:1647–1655

    Article  Google Scholar 

  • Queller DC, Strassmann JE (1998) Kin selection and social insects. Bioscience 48:165–175

    Article  Google Scholar 

  • Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc B 364:3143–3155

    Article  Google Scholar 

  • Queller D, Strassmann J (2013) The veil of ignorance can favor biological cooperation. Biol Lett 23:20130365

    Article  Google Scholar 

  • Ratnieks FLW, Visscher PK (1989) Worker policing in the honeybee. Nature 342:796–797

    Article  Google Scholar 

  • Rigaud T, Juchault P, Mocquard JP (1997) The evolution of sex determination in isopod crustaceans. BioEssays 19:409–416

    Article  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2013) Role of microorganisms in adaptation, development, and evolution of animals and plants: the hologenome concept. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, pp 347–358

    Chapter  Google Scholar 

  • Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79:135–160

    Article  Google Scholar 

  • Santelices B (1999) How many kinds of individual are there? Trends Ecol Evol 14:152–155

    Article  Google Scholar 

  • Seeley TD (1989) The honey bee colony as a superorganism. Am Sci 77:546–553

    Google Scholar 

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  Google Scholar 

  • Stacy A, McNally L, Darch SE, Brown SP, Whiteley M (2016) The biogeography of polymicrobial infection. Nat Rev Microbiol 14:93–105

    Article  Google Scholar 

  • Strand MR, Burke GR (2014) Polydnaviruses: nature’s genetic engineers. Ann Rev Virol 1:333–354

    Article  Google Scholar 

  • Strassmann JE, Queller DC (2010) The social organism: congresses, parties, and committees. Evolution 64:605–616

    Article  Google Scholar 

  • Strassmann JE, Queller DC (2014) Privatization and property in biology. Anim Behav 92:305–311

    Article  Google Scholar 

  • Tai V, James ER, Nalepa CA, Scheffrahn RH, Perlman SJ, Keeling PJ (2015) The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol 81:1059–1070

    Article  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804

    Article  Google Scholar 

  • Weeks P (2000) Red-billed oxpeckers: vampires or tickbirds? Behav Ecol 11:154–160

    Article  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861

    Article  Google Scholar 

  • Wernegreen JJ (2012) Endosymbiosis. Curr Biol 22:R555–R561

    Article  Google Scholar 

  • Wernegreen JJ, Moran NA (2001) Vertical transmission of biosynthetic plasmids in aphid endosymbionts (Buchnera). J Bactieriol 183:785–790

    Article  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  Google Scholar 

  • Wheeler WM (1911) The ant colony as organism. J Morphol 22:307–325

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  Google Scholar 

  • Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89–111

    Article  Google Scholar 

Download references

Acknowledgments

We thank Thomas Pradeu for encouraging this work and for stimulating discussion and helpful comments. We also thank Judie Bronstein and two anonymous referees for their helpful comments on the manuscript. This is a Tyson Research Center of Washington University in St. Louis contribution. Our research is funded by the John Templeton Foundation #43667 and the USA National Science Foundation Grants #IOS1256416 and #DEB1146375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Queller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queller, D.C., Strassmann, J.E. Problems of multi-species organisms: endosymbionts to holobionts. Biol Philos 31, 855–873 (2016). https://doi.org/10.1007/s10539-016-9547-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10539-016-9547-x

Keywords

Navigation