Skip to main content
Log in

Special theory of relativity in chemistry

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Application of Einstein special theory of relativity in chemistry seems to be superfluous; energies are too low. The average velocity of electron in hydrogen atom (1 s 1) is 1/135 c, making its actual mass only 26,6 ppm bigger than the rest mass. However, for heavier elements (about Z > 60) relativistic effects have to be taken into account and, more, many phenomena cannot be explained without ascribing new mass to electrons, in accordance with Einstein theory. In this paper such phenomena are described: color of metallic gold and Bi and Pb compounds, contraction of Ln-X bond of lanthanide trihalides, voltage of lead-acid and Zn/HgO battery, and the shape of gold clusters. Besides, essentials of Einstein theory and quantum chemistry were problems concerning the validity of Lavoisier law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In special theory of relativity, space and time form a new dimension, space–time. The word comes from German (Raumzeit), and because of this, its grammatical form is not time–space; in German there is namely word Zeitraum, meaning “period of time”.

  2. Newton’s definitions of space, „Spatium Absolutum, natura sua absqe relatione ad externum quidvis, semper manet similare et immobile “, and time, „Tempus Absolutum, verum et mathematicum, in se et natura sua absque relatione ad externum quodvis, aequabiliter fluit, alioque nomine dicitur Duratio.“ (Newton 1687).

  3. For nuclear fusion (2H + 3H → 4He + n, Q = 17.6 MeV) the mass defect equals 0.092%.

  4. This should imply it is not possible to make elements Z > 137, because electron in 1 s orbital should move faster than light! It is not so, because electrons mutually interact (Pomeranchuk 1945; Tucker 1968).

References

  • Ahuja, R., Blomqvist, A., Larsson, P., Pyykkö, P., Zeleski-Ejgierd, P.: Relativity and the lead-acid battery. Phys. Rev. Lett. 106, 018301 (2011)

    Article  Google Scholar 

  • Bonačić-Koutecký, V., Burda, J., Mitrić, R., Ge, M.F., Zampella, G., Fantucci, P.: Density functional study of structural and electronic properties of bimetallic silver-gold clusters: comparison with pure gold and silver clusters. J. Chem. Phys. 117, 3120–3131 (2002)

    Article  Google Scholar 

  • Calvo, F., Pahl, E., Wormit, M., Schwerdtfleger, P.: Evidence for low temperature melting of mercury due to relativity. Angew. Chem. Int. Ed. 52, 7583–7585 (2013)

    Article  Google Scholar 

  • Clavaguéra, C., Dognon, J.P., Pyykkö, P.: Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: the contributions from relativity and 4f-shell hybridization. Chem. Phys. Lett. 429, 8–12 (2006)

    Article  Google Scholar 

  • Einstein, A.: The Meaning of Relativity. London and New York: Routledge Classics, Routledge, 2003, P. 3

  • Einstein, A.: Transl. of A. Einstein. Vier Vorlesungen über Relativitätstheorie. Vieweg, 1922

  • El-Issa, B.D., Pyykkö, P., Zanati, H.M.: MS Xα studies of the colors of BiPh5, PbCl62-, and WS42-: are relativistic effects on the LUMO important? Inorg. Chem. 30, 2781–2787 (1991)

    Article  Google Scholar 

  • Friedrich, B.: …Hasn’t it? A commentary of Eric Scerri’s Paper „has quantum mechanics explained the periodic table“, now published under the title „Just How Ab Initio is Ab Initio Quantum Chemistry“. Fund. Chem. 6, 117–132 (2004)

    Article  Google Scholar 

  • Glantschnig, K., Ambrosch-Draxl, C.: Relativistic effects on the linear optical properties of Au, Pt, Pb and W. New J. Phys. 12, 103048 (2010)

    Article  Google Scholar 

  • Häkkinen, H., Moseler, M., Landman, U.: Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. Phys. Rev. Lett. 89, 033401 (2002)

    Article  Google Scholar 

  • Huang, W., Ji, M., Dong, C.D., Gu, X., Wang, L.M., Gong, X.G., Wang, L.S.: Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACS Nano 2, 897–904 (2008)

    Article  Google Scholar 

  • Jammer, M. (foreword by A. Einstein): Concepts of Space. The History of Theories of Space in Physics. Cambridge: Harvard Univ. Press, 1954

  • Lombardi, O., Labarca, M.: On the ontological autonomy of the chemical world. Found. Chem. 7, 125–148 (2005)

    Article  Google Scholar 

  • Newton, I.: Philosophiae Naturalis Principia Mathematica. London: 1687. (I. Newton. The Principia. Mathematical Principles of Natural Philosophy. Berkeley-Los Angeles: Univ. California Press, 1999.)

  • Ostrovsky, V.N.: What and how physics contributed to understanding the periodic law. Found. Chem. 3, 145–181 (2001)

    Article  Google Scholar 

  • Pomeranchuk, I., Smorodinsky, Ya.: On the energy levels of systems with Z> 137. J. Phys. USSR. 9, 97–100 (1945)

    Google Scholar 

  • Pyykkö, P.: Relativistic quantum chemistry. Adv. Quantum Chem. 11, 353–409 (1978)

    Article  Google Scholar 

  • Pyykkö, P., Snijders, J.G., Baerends, E.J.: On the effect of d orbitals on relativistic bond-length contractions. Chem. Phys. Lett. 83, 432–437 (1981)

    Article  Google Scholar 

  • Pyykkö, P.: Theoretical chemistry of gold. III. Chem. Soc. Rev. 37, 1967–1997 (2008)

    Article  Google Scholar 

  • Pyykkö, P.: Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem. 63, 45–64 (2012)

    Article  Google Scholar 

  • Scerri, E.R.: Have orbitals really been observed? J. Chem. Educ. 77, 1492–1494 (2000)

    Article  Google Scholar 

  • Scerri, E.R.: Just how Ab Initio is Ab Initio quantum chemistry. Found. Chem. 6, 93–116 (2004a)

    Article  Google Scholar 

  • Scerri, E.R.: Has quantum mechanics explained the periodic table? Found. Chem. 6, 117–132 (2004b)

    Article  Google Scholar 

  • Scerri, E. R.: The Periodic Table. Its Story and Its Significance. Oxford: Oxford Univ. Press, 2007a, p. 232

  • Scerri, R. E.: The Ambiguity of Chemistry. Hyle. 13(2): 67–81, 2007b (a)

  • Tucker, T.C., Roberts, L.D., Nestor, C.W., Jr., Carlson, T.A., Malik, F.B.: Calculation of the electron binding energies and x-ray energies of superheavy elements 114, 126 and 140 using relativistic self-consistent field atomic wave functions. Phys. Rev. 174, 118–124 (1968)

    Article  Google Scholar 

  • Zeleski-Ejgierd, P., Pyykkö, P.: Relativity and the mercury battery. Phys. Chem. Phys. 13, 16510–16512 (2011)

    Article  Google Scholar 

  • Ziegler, T., Snijders, J.G., Baerends, E.J.: On the origin of relativistic bond contraction. Chem. Phys. Lett. 75, 1–4 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Raos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first version of this paper was published in Croatian; N. Raos. Specijalna teorija relativnosti u kemiji. Kem. Ind. 69(11–12): 659–664, 2020.

Nenad Raos Retired from Institite for Medical Research and Occupational Helath, Zagreb, Croatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raos, N. Special theory of relativity in chemistry. Found Chem 24, 87–95 (2022). https://doi.org/10.1007/s10698-022-09420-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-022-09420-3

Keywords

Navigation