Skip to main content
Log in

Building the stemma codicum from geometric diagrams

A treatise on optics by Ibn al-Haytham as a test case

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

In view of the progress made in recent decades in the fields of stemmatology and the analysis of geometric diagrams, the present article explores the possibility of establishing the stemma codicum of a handwritten tradition from geometric diagrams alone. This exploratory method is tested on Ibn al-Haytham’s Epistle on the Shape of the Eclipse, because this work has not yet been issued in a critical edition. Separate stemmata were constructed on the basis of the diagrams and the text, and a comparison showed no major differences. The greater reliability of a stemma codicum constructed on the basis of the diagrams rather than the text of a mathematical work is discussed, and preliminary conclusions are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. See in particular, Cambiano (1992), Decorps-Foulquier (1999), Netz (1999), Young (2005), Mascellani et al. (2005), Saito (2005); Saito (2006); Saito (2011), Sidoli (2007), Manders (2008), Sidoli and Saito (2009), Jardine and Jardine (2010), Saito and Sidoli (2012), Mumma et al. (2013).

  2. For example, the simple rephrasing of statements or the transposition of the words odientis oscula to make the verse Quam fraudulenta oscula odientis rhyme with Meliora sunt vulnera diligentis (Huygens 2001, p. 55).

  3. This comparison builds on the difference between homology, i.e., a similarity inherited from a common ancestor, and homoplasy, i.e., a similarity shared by two individuals, whereas it is not found in the ancestor.

  4. On the application of cladistic analysis in different domains, the reader is directed to the following key studies: on the approach in general (Glenisson 1979; van Reenen et al. 1996, 2004; Robinson 1996; Dees 1988; Huygens 2001; Woerther and Khonsari 2001; Macé et al. 2001; Macé and Baret 2006; Cipolla et al. 2012); in literary texts (Robinson and O’Hara 1996; Salemans 1996, 2000; Barbrook et al. 1998; Mooney et al. 2001; Windram et al. 2008; Maas 2010); and in scientific texts (Brey 2009; Pietquin 2010; Cardelle de Hartmann et al. 2013).

  5. After constructing the stemma on the basis of a review of text accidents, Crozet says: “Cette filiation, dont nous venons d’étayer l’affirmation par le menu en considérant le texte seul, peut également se lire à l’aide des figures.” Al-Sijzī’s Barāhīn kitāb Uqlīdis fī al-‘uṣūl (Demonstrations of the Book of Euclid on the Elements) is known in three copies: B Dublin, Chester Beatty MS 3652, fols. 17r–28v, R Istanbul, Reshit MS 1191, fols. 84v–105v, and L London, India Office MS 1270, fols. 87r–100r. MSS R and B are linked to one another. In the third demonstration of prop. I.2, both carry the correct lettering of point Ǧ. In the fourth demonstration, both refer to point H, which does not appear in MS L. In prop. II.9 both manuscripts contain superfluous lines. Furthermore, MS L predates MS R for the latter is the only text where point Ǧ is placed on \(AH\), in keeping with the text stemma.

    Fig. 1
    figure 1

    I.38 (codex P)

    Fig. 2
    figure 2

    I.38 (codex B)

  6. Heath assumes that \(\varDelta \) and \(E\) are the two points of intersection of \(A\varGamma \!\varDelta \) and \(E\!B\varDelta \), though it is not explicit in Euclid: “With centre \(A\) and distance \(AB\) let the circle \(B\varDelta E\) be described...” (Heath 1956, p. 96).

  7. Shared true characters also include the so-called “co-exact” geometric properties. “Co-exact attributes are those conditions which are unaffected by some range of every continuous variation of a specified diagram” (Manders 2008, p. 92). Typically, these are topological relations, which are more stable than magnitudes or ratios of magnitudes.

  8. With a view toward creating a matrix of characters, I have used straightforward codes: f: false, s: smaller, g: greater, e: equal, p: positive, n: negative, u: up, d: down, r: right, l: left, and ? for a missing character.

  9. Compare in this respect Menelaus’ Spherics, props. III, 1, III, 2a, III, 2b vs I, 51, I, 54, I, 57 (Sidoli and Li 2011). Other examples appear in Theodosius’ Spherics (Sidoli and Saito 2009).

  10. In order to locate a passage parallel to a given passage in any extant manuscript, we define a new measurement called “time,” which counts 0 as the beginning of the text and 1 as the end of the text in any complete version. Thereby one can precisely define a given passage from any text. As regards the transliteration of the Arabic, I have adopted DIN-31635 throughout, except for G ‘ayn, which does not interfere with Ǧ ǧīm or Ġ ġayn.

  11. O for Oblongus.

  12. This is the result of \((36+30+16+29+20)/5/65=0.40\) and \((32+24+6+20+19)/5/40=0.51\).

  13. This is the result of \((36-16)/65=0.31\) and \((32-6)/40=0.65\).

  14. A random selection of errors in diagrams will yield a certain combination of stated and unstated errors. At one extreme, it is possible that the random draw will include stated errors only, in which case the result will be the same as if we based our analysis on the errors the text. Otherwise, the random draw will include some unstated errors as well, and in this case the result will be better than if we had simply selected errors in the text, because unstated errors are more discriminating than stated errors (Property 2 in Sect. 4.2). Therefore, the resolution capability of a random selection of the errors contained in diagrams is greater than or equal to the resolution capability of an analysis based on stated errors.

  15. The techniques are RHM, PAUP Parsimony, Parsimony Bootstrap, Neighbour Joining, Neighbour Joining Bootstrap, Least Squares, Least Squares Bootstrap; n-Gram Clustering; SplitsTree4 NeighborNet, SplitDecomp, ParsimonySplits, CompLearn, Hierarchical Clustering, and seven manual methods. The similarity between the stemmata produced is estimated by the average sign distance ASD, which provides a value ranging from 0 (the two stemmata are different) to 1 (the two stemmata are identical).

  16. A branch of zero length means that there is no difference between the manuscript (terminal node) and the progenitor (intermediary node). The closest fit is MS Petersburg, which is very similar to the out-group.

  17. This conclusion does not hold for later periods. With the spread of copperplate engraving, diagrams were frequently grouped together on pages distinct from the text in printed editions (Rider 1993; Barrow-Green 2006). Prof. Gregg de Young informs me that later manuscripts could at times reproduce this arrangement, such as Cairo, Dār al-kutub, handasa turkiyya 42, ca. 1300 H./1834 or Ṭal‘at Riyāda, handasa turkiyya 3, ca. 1250 H./1882. Quite possibly, these two manuscripts were copied from the Usūl-i hendese, a Turkish translation by Hüseyin Rıfkı Tamānī of Bonnycastle’s Elements of Geometry that was printed by the Maṭba‘at Būlāq in 1241 H./1825 (Young 2012, p. 51).

  18. This variation in length means that there are more text differences than diagram differences between, say, node [2] and MS India 1270 (Fig. 8, 9).

  19. Another way to proceed might have been to search for the consensus tree between the diagram and text stemmata. We did not proceed any further in this direction, because the consensus tree algorithm is based on bootstrapping, which has certain limitations (Wiesemiller and Rothe 2006, pp. 161–5; Kitching 1998, pp. 129–31).

  20. The diagrams in MS O contain 48 errors within a total area of \(38.26\,\hbox {cm}^2\) and the error density is therefore \(\delta _D=1.25\) per \(\hbox {cm}^2\), while the text contains 138 errors within a written area of \(847.20\,\hbox {cm}^2\): \(\delta _T=0.16\) per \(\hbox {cm}^2\). The diagrams in MS B contain 57 errors within a total area of 134.29 \(\hbox {cm}^2\): \(\delta _D=0.42\) per \(\hbox {cm}^2\), while the text has 262 errors within an area of \(4{,}034.84\,\hbox {cm}^2\): \(\delta _T=0.06\) per \(\hbox {cm}^2\). Therefore, the number of errors is \(7.0 \leqslant \delta _D / \delta _T \leqslant 7.8\) times greater in a diagram than in a text of the same area.

  21. That is, when the diagrams are embedded in the text and show no obvious signs of emendation or alteration.

References

  • Barbrook, A.C., N. Blake, and P.M.W. Robinson. 1998. The phylogeny of the Canterbury Tales. Nature 394: 839.

    Article  Google Scholar 

  • Barrow-Green, J. 2006. ‘Much necessary for all sortes of men:’ 450 years of Euclid’s Elements in English. BSHM Bulletin 21: 2–25.

    Article  MATH  MathSciNet  Google Scholar 

  • Bédier, J. 1929. La tradition manuscrite du Lai de l’ombre. Réflexions sur l’art d’éditer les anciens textes. Paris: Honoré Champion.

    Google Scholar 

  • Bourgain, P., and F. Vielliard. 2002. Conseils pour l’édition des textes médiévaux, III. Paris: École des Chartes.

    Google Scholar 

  • Brey, G. 2009. Scientific manuscripts in the digital age. Digital Proceedings of the Lawrence J. Schoenberg Symposium on Manuscript Studies in the Digital Age. Issue 1: On the Nature of Things: Modern Perspectives on Scientific Manuscripts. Art. 5: 1–7.

  • Cambiano, G. 1992. La démonstration géométrique. In Les Savoirs de l’écriture en Grèce ancienne, ed. M. Detienne, 251–272. Lille: Presses universitaires de Lille.

    Google Scholar 

  • Cardelle de Hartmann, C., P. Schwagmeier, and P. Roelli. 2013. Petrus Alfonsi, Dialogus: Kritische Edition und Kommentar (work in progress). Universität Zürich: Philosophische Fakultät.

  • Cipolla, A., M. Buzzoni, O.E. Haugen and R. Rosselli Del Turco (ed.). 2012. IV Incontro di Filologia Digitale: Constitutio Textus (Verona, 13–15 September 2012).

  • Crozet, P. 2005. Editer les figures des manuscrits arabes de géométrie: l’exemple d’al Sijzī. In The problem of diagrams and drawings criticism in mathematical texts, ed. P. Mascellani, P.D. Napolitani and V. Gavagna, 33–42. A Workshop Held in Pisa, Report Version 1.0.

  • Decorps-Foulquier, M. 1999. Sur les figures du traité des coniques d’Apollonios de Pergé édité par Eutocius d’Ascalon. Revue d’histoire des mathématiques 5: 61–82.

    MATH  MathSciNet  Google Scholar 

  • Dees, A. 1988. Ecdotique et informatique. In Actes du XVIIIe Congrès international de linguistique et de philologie romanes (Trier, 18–24 Mai 1986), ed. J. Kremer, VI, 18–27. Tübingen: Niemayer.

  • De Young, G. 2004. The Latin translation of Euclid’s Elements attributed to Gerard of Cremona in relation to the Arabic transmission. Suhayl 4: 311–383.

    Google Scholar 

  • De Young, G. 2005. Diagrams in the Arabic Euclidean tradition. Historia Mathematica 32: 129–179.

    Article  MATH  MathSciNet  Google Scholar 

  • De Young, G. 2012. Mathematical diagrams from manuscript to print: Examples from the Arabic Euclidean transmission. Synthese 186: 21–54.

    Article  MATH  MathSciNet  Google Scholar 

  • Dom Quentin, H. 1922. Mémoire sur l’établissement du texte latin de la Vulgate. Rome: Desclée et Cie.

    Google Scholar 

  • Edgerton, S.Y. 1985. The renaissance development of scientific illustration. In Science and the arts in the renaissance, ed. J.W. Shirley and F.D. Hoeniger, 168–197. Washington D.C.: Folger Books.

  • Felsenstein, J. 2009. Phylip. Phylogeny Inference Package. Version 3.69. http://evolution.genetics.washington.edu/phylip.html

  • Glenisson, J. (ed.). 1979. La Pratique des ordinateurs dans la critique des textes. Actes du Colloque international (Paris, 29–31 mars 1978). Paris: Éditions du CNRS.

    Google Scholar 

  • Heath, T.L. 1956. The thirteen books of Euclid’s elements, Translated from the text of Heiberg with introduction and commentary. New York: Dover.

  • Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.

    Google Scholar 

  • Huygens, R.B.C. 2001. Ars edendi. Introduction pratique à l’édition des textes latins du Moyen Age. Turnhout: Brepols.

    Google Scholar 

  • Jardine, B., and N. Jardine. 2010. Critical editing of early modern astronomical diagrams. Journal for History of Astronomy 41(3): 393–414.

    MathSciNet  Google Scholar 

  • Khalidov, A.B. 1986. Arabskie rukopisi Instituta vostokovedenija kratkij katalog, chast’ 2: Ukazateli i priloženie. Moskva: Izdatel’stvo Nauka.

    Google Scholar 

  • Kitching, I., et al. 1998. Cladistics. The theory and practice of parsimony analysis. Oxford: Oxford University Press.

    Google Scholar 

  • Krause, M. 1936. Stambuler Handschriften islamischer Mathematiker. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Studien 3: 437–532.

    Google Scholar 

  • Lachmann, K. 1850. Caroli Lachmanni in T. Lucretii Cari De rerum natura libros commentarius. Berolini: Impensis G. Reimeiri.

    Google Scholar 

  • Loth, O. 1877. A catalogue of the Arabic manuscripts in the library of the India Office. London.

  • Maas, P. 1958. Textual criticism. Oxford: Clarendon Press.

    Google Scholar 

  • Maas, P. 2010. Computer Aided Stemmatics. The Case of Fifty-Two Text Versions of Carakasasahitā Vimānasthāna 8.67-157. Wiener Zeitschrift für die Kunde Südasiens 52/53: 63–120.

    Google Scholar 

  • Macé, C., T. Schmidt, and J.F. Weiler. 2001. Le classement des manuscrits par la statistique et la phylogénétique: les cas de Grégoire de Nazianze et de Basile le Minime. Revue d’Histoire des Textes 31: 241–273.

    Google Scholar 

  • Macé, C., and Baret, P.V. 2006. Why phylogenetic methods work: The theory of evolution and textual criticism. In The evolution of texts. Confronting stemmatological and genetical methods, ed. C. Macé et al., 89–108. Roma-Pisa: Istituti editoriali e poligrafici internazionali.

  • Mahoney, M.S. 1985. Diagrams and dynamics: Mathematical perspectives on Edgerton’s thesis. In Science and the arts in the renaissance, ed. J.W. Shirley, and F.D. Hoeniger, 198–220. Washington, D.C.: Folger Books.

    Google Scholar 

  • Manders, K. 2008. The Euclidean diagram. In The philosophy of mathematical practice, ed. P. Mancosu, 80–133. Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Mascellani, P., P.D. Napolitani, V. Gavagna (ed). 2005. The problem of diagrams and drawings criticism in mathematical texts. A Workshop Held in Pisa, Report Version 1.0.

  • Mooney, L.R., A.C. Barbrook, C.J. Howe, and M. Spencer. 2001. Stemmatic analysis of Lydgate’s Kings of England: A test case for the application of software developed for evolutionary biology to manuscript stemmatics. Revue d’Histoire des Textes 31: 275–297.

    Google Scholar 

  • Mumma, J., M. Panza, and G. Sandu, eds. 2013. Diagrams in mathematics: History and philosophy. Synthese 186(1): 7–20.

    Google Scholar 

  • Murdoch, J.E. 1984. Album of science: Antiquity and the middle ages. New York: Scribner’s Sons.

    Google Scholar 

  • Naẓīf, M. 1942/1943. Al-Ḥasan Ibn al-Haytham wa-buḥūthuhu wa-kushūfuhu al-naẓariyya, 2 vols. Cairo: University of Cairo.

  • Netz, R. 1999. The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Pietquin, P. 2010. Le Septième livre du traité De aspectibus d’Alhazen, traduction latine médiévale de l’Optique d’Ibn al-Haytham. Bruxelles: Académie royale de Belgique.

    Google Scholar 

  • Rashed, R. 1993. Les Mathématiques infinitésimales du IXe au XIe siècle, vol. II. Ibn al-Haytham. London: al-Furqān Islamic Heritage Foundation.

  • Rashed, R. 2005. Geometry and dioptrics in classical Islam. London: al-Furqān Islamic Heritage Foundation.

  • Rashed, R. 2006. Les Mathématiques infinitésimales du IXe au XIe siècle, vol. V: Astronomie, géométrie sphérique et trigonométrie. London: al-Furqān Islamic Heritage Foundation.

  • Rider, R.E. 1993. Early modern mathematics in print. In Non-verbal communication in science prior to 1900, ed. R.G. Mazzolini, 91–113. Firenze: Leo S. Olschki.

  • Robinson, P.M.W. 1996. Computer-assisted analysis and ‘best-text’ historical editing. In Studies in stemmatology, ed. P. van Reenen et al., 123–134. Amsterdam: John Benjamins.

  • Robinson, P.M.W., and R.J. O’Hara. 1996. Cladistic analysis of an Old Norse manuscript tradition. Research in Humanities Computing 4: 115–137.

    Google Scholar 

  • Robinson, P.M.W. 1998. New methods of editing, exploring, and reading the Canterbury Tales. A talk given at the conference ’I nuovi orizzonti della filologia’. Accademia Nazionale dei Lincei (Rome, May 28, 1998).

  • Roos, T., and T. Heikkilä. 2009. Evaluating methods for computer-assisted stemmatology using artificial benchmark data sets. Literary and Linguistic Computing 24: 417–433.

    Article  Google Scholar 

  • Sabra, A.I. 1972. Ibn al-Haytham. In Dictionary of scientific biography VI, ed. C.C. Gillispie, 189–210. New York: Scribner’s Sons.

  • Sabra, A.I., and N. Shehaby. 1971. Ibn al-Haytham, al-Shukūk ‘alā Baṭlamyūs (Dubitationes in Ptolemaeum). Cairo: The National Library Press.

    Google Scholar 

  • Saito, K. 2005. The diagrams in codex P of Euclid’s elements. In The problem of diagrams and drawings criticism in mathematical texts, ed. P. Mascellani, P.D. Napolitani and V. Gavagna, 19–28. A Workshop Held in Pisa, Report Version 1.0.

  • Saito, K. 2006. A preliminary study in the critical assessment of diagrams in Greek mathematical works. Sciamvs 7: 81–144.

    Google Scholar 

  • Saito, K. ed. 2011. Diagrams in Greek mathematical texts. kakenhi, Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science. Report Version 2.03.

  • Saito, K. ed. 2013. Reproduced diagrams from Greek and Arabic manuscripts. Research Report ‘Databasing the Manuscript Diagrams of Sources in Ancient and Medieval Mathematics’.

  • Saito, K., and N. Sidoli. 2012. Diagrams and arguments in ancient Greek mathematics: Lessons drawn from comparisons of the manuscript diagrams with those in modern critical editions. In The history of mathematical proof in ancient traditions, ed. K. Chemla, 135–162. Cambridge: Cambridge University Press.

    Google Scholar 

  • Salemans, B.J.P. 1996. Cladistics or the resurrection of the method of Lachmann. On building the stemma of Yvain. In Studies in stemmatology, ed. P. van Reenen et al., 3–70. Amsterdam: J. Benjamins.

  • Salemans, B.J.P. 2000. Building stemmas with the computer in a cladistic. Neo-Lachmannian, way. The case of fourteen text versions of Lanseloet van Denemerken. Thesis. Nijmegen: Katholieke Universiteit.

  • Sidoli, N. 2007. What we can learn from a diagram: The case of Aristarchus’s on the sizes and distances of the Sun and Moon. Annals of Science 64: 527–547.

    Article  Google Scholar 

  • Sidoli, N., and J.L. Berggren. 2007. The Arabic version of Ptolemy’s planisphere or flattening the surface of the sphere: Text, translation, commentary. Sciamvs 8: 37–139.

    MATH  MathSciNet  Google Scholar 

  • Sidoli, N., and K. Saito. 2009. The role of geometrical construction in Theodosius’s spherics. Archive for History of Exact Sciences 63: 581–609.

    Article  MATH  MathSciNet  Google Scholar 

  • Sidoli, N., and C. Li. 2011. The manuscript diagrams of al-Harawī’s version of spherics. Research report for ‘Databasing the manuscript diagrams of sources in ancient and medieval mathematics’, Japan Society for the Promotion of Science Grants-in-Aid, 2009–2010, no. 2130325.

  • Suzuki, T. 2011. The diagrams of the phaenomena in Greek and Arabic manuscripts. In Diagrams in Greek mathematical texts, ed. K. Saito, 15–38. kakenhi Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science. Report version 2.03.

  • Swofford, D.L. 2003. PAUP \(^*\) Phylogenetic analysis using parsimony, version 4.0. Tallahassee: Florida State University.

  • van Reenen, P., M. van Mulken, and J. Dyk (eds.). 1996. Studies in stemmatology. Amsterdam: John Benjamins.

    Google Scholar 

  • van Reenen, P., A. den Hollander, and M. van Mulken (eds.). 2004. Studies in stemmatology II. Amsterdam: John Benjamins.

    Google Scholar 

  • Viré, G. 1986. Informatique et classement des manuscrits. Essai méthodologique sur le ‘De astronomia’ d’Hygin. Bruxelles: Éditions de l’Université de Bruxelles.

  • Wiedemann, E. 1914. Über der Camera obscura bei Ibn al Haiṭam. Sitzungsberichte phys.-med. Sozietät in Erlangen 46: 155–169.

    Google Scholar 

  • Wiesemiller, B., and H. Rothe. 2006. Interpretation of bootstrap values in phylogenetic analysis. Anthropologischer Anzeiger 64: 161–165.

    Google Scholar 

  • Windram, H.F., P. Shaw, P. Robinson, and C.J. Howe. 2008. Dante’s Monarchia as a test case for the use of phylogenetic methods in stemmatic analysis. Literary and Linguistic Computing 23: 443–463.

    Article  Google Scholar 

  • Woerther, F., and H. Khonsari. 2001. L’application des programmes de reconstructions phylogénétique sur ordinateur à l’étude de la tradition manuscrite d’un texte: l’exemple de l’Ars Rhetorica du Pseudo-Denys d’Halicarnasse. Revue d’Histoire des Textes 31: 227–240.

    Google Scholar 

Download references

Acknowledgments

I gratefully acknowledge Ken Saito (Osaka Prefecture University), Gregg de Young (American University in Cairo), A. Mark Smith (University of Missouri), Len Berggren (Simon Fraser University) and anonymous referees for valuable comments on a first draft of this paper, while reserving for myself full responsibility for any remaining errors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Raynaud.

Additional information

Communicated by: Len Berggren.

Appendices

Appendix A

See Tables 5 and 6.

Table 5 List of stated characters in Ibn al-Haytham’s Epistle on the shape of the eclipse
Table 6 List of unstated characters in Ibn al-Haytham’s Epistle on the shape of the eclipse

Appendix B

See Figs. 1011121314, and 15.

Fig. 10
figure 10

MS F Fātiḥ 3439

Fig. 11
figure 11

MS B Bodleian Arch. Seld. A32

Fig. 12
figure 12

MS P St. Petersburg B1030

Fig. 13
figure 13

MS O India Office 1270

Fig. 14
figure 14

MS L India Office 461

Fig. 15
figure 15

Edited diagrams

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raynaud, D. Building the stemma codicum from geometric diagrams. Arch. Hist. Exact Sci. 68, 207–239 (2014). https://doi.org/10.1007/s00407-013-0134-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-013-0134-0

Keywords

Navigation