Skip to main content
Log in

Test of Trace Formulas for Spectra of Superconducting Microwave Billiards

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Experimental tests of various trace formulas, which in general relate the density of states for a given quantum mechanical system to the properties of the periodic orbits of its classical counterpart, for spectra of superconducting microwave billiards of varying chaoticity are reviewed by way of examples. For a two-dimensional Bunimovich stadium billiard the application of Gutzwiller's trace formula is shown to yield correctly locations and strengths of the peaks in the Fourier transformed quantum spectrum in terms of the shortest unstable classical periodic orbits. Furthermore, in two-dimensional billiards of the Limaçon family the transition from regular to chaotic dynamics is studied in terms of a recently derived general trace formula by Ullmo, Grinberg and Tomsovic. Finally, some salient features of wave dynamical chaos in a fully chaotic three-dimensional Sinai microwave billiard are discussed. Here the reconstruction of the spectrum is not as straightforward as in the two-dimensional cases and a modified trace formula as suggested by Balian and Duplantier will have eventually to be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  2. M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic Press, San Diego, 1991).

    Google Scholar 

  3. O. Bohigas, in Chaos and Quantum Physics, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (Elsevier, Amsterdam, 1991), p. 87.

    Google Scholar 

  4. T. Guhr, A. Müller-Groeling, and H. A. Weidenmüler, Phys. Rep. 299, 189 (1998).

    Google Scholar 

  5. M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971).

    Google Scholar 

  6. A. Einstein, Verhandl. Deutsch. Physikal. Ges. 19, 82 (1917). L. Brillouin, J. Phys. Rad. 7, 353 (1926). J.B. Keller, Ann. Phys. (N.Y.) 4, 180 (1958).

    Google Scholar 

  7. M. C. Gutzwiller, J. Math. Phys. 11, 1792 (1970).

    Google Scholar 

  8. M. V. Berry and M. Tabor, Proc. R. Soc. Lond. A 349, 101 (1976). M. V. Berry and M. Tabor, J. Phys. A 10, 371 (1977).

    Google Scholar 

  9. D. Ullmo, M. Grinberg, and S. Tomsovic, Phys. Rev. E 54, 136 (1996). S. Tomsovic, M. Grinberg, and D. Ullmo, Phys. Rev. Lett. 75, 4346 (1995).

    Google Scholar 

  10. G. D. Birkhoff, Acta. Math. 50, 359 (1927).

    Google Scholar 

  11. Ya. G. Sinai, Sov. Math. Dokl. 4, 1818 (1963).

    Google Scholar 

  12. L. A. Bunimovich, Zh. E_ ksp. Teor. Fiz. 89, 1452 (1985) [Sov. Phys. JETP 62, 842 (1985)]. 13. P. Sarnak, Israel Math. Conf. Proc. 8, 183 (1995).

    Google Scholar 

  13. S. W. McDonald and A. N. Kaufman, Phys. Rev. Lett. 42, 1189 (1979).

    Google Scholar 

  14. F. Steiner, in Schlaglichter der Forschung, Zum 75. Jahrestag der Universität Hamburg 1994, R. Ansorge, ed. (Reimer, Berlin, 1994), p. 543.

    Google Scholar 

  15. M. V. Berry, Proc. R. Soc. Lond. A 413, 183 (1987).

    Google Scholar 

  16. H.-J. Stöckmann and J. Stein, Phys. Rev. Lett. 64, 2215 (1990).

    Google Scholar 

  17. S. Sridhar, Phys. Rev. Lett. 67, 785 (1991).

    Google Scholar 

  18. J. Stein and H.-J. Stöckmann, Phys. Rev. Lett. 68, 2867 (1992).

    Google Scholar 

  19. H.-D. Grôf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C. Rangacharyulu, A. Richter, P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett. 69, 1296 (1992).

    Google Scholar 

  20. P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett. 74, 2662 (1995).

    Google Scholar 

  21. H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  22. H. Alt, C. Dembowski, H.-D. Gräf, R. Hofferbert, H. Rehfeld, A. Richter, and C. Schmit, Phys. Rev. E 60, 2851 (1999).

    Google Scholar 

  23. H. Alt, H.-D. Gräf, H. L. Harney, R. Hofferbert, H. Lengeler, C. Rangacharyulu, A. Richter, and P. Schardt, Phys. Rev. E 50, 1 (1994).

    Google Scholar 

  24. H. Alt, H.-D. Gräf, H. L. Harney, R. Hofferbert, H. Lengeler, A. Richter, P. Schardt, and H. A. Weidenmüller, Phys. Rev. Lett. 74, 62 (1995).

    Google Scholar 

  25. H. Alt, C. I. Barbosa, H.-D. Gräf, T. Guhr, H. L. Harney, R. Hofferbert, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 81, 4847 (1998).

    Google Scholar 

  26. H. Alt, H.-D. Gräf, R. Hofferbert, C. Rangacharyulu, H. Rehfeld, A. Richter, P. Schardt, and A. Wirzba, Phys. Rev. E 54, 2303 (1996).

    Google Scholar 

  27. H. Alt, C. Dembowski, H.-D. Gräf, R. Hofferbert, H. Rehfeld, A. Richter, R. Schuhmann, and T. Weiland, Phys. Rev. Lett. 79, 1026 (1997).

    Google Scholar 

  28. J. D Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975).

    Google Scholar 

  29. M. R. Schroeder, J.Audio Eng. Soc. 35, 307 (1987), originally published in Acustica 4, 456 (1954).

    Google Scholar 

  30. R. L. Weaver, J. Acoust. Soc. Am. 85, 1001 (1989).

    Google Scholar 

  31. C. Ellegaard, T. Guhr, K. Lindemann, H. Q. Lorensen, J. Nyga# rd, and M. Oxborrow, Phys. Rev. Lett. 75, 1546 (1995). P. Bertelsen, C. Ellegaard, T. Guhr, M. Oxborrow, and K. Schaadt, Phys. Rev. Lett. 83, 2171 (1999).

    Google Scholar 

  32. S. Deus, P. M. Koch, and L. Sirko, Phys. Rev. E 52, 1146 (1995).

    Google Scholar 

  33. R. Balian and B. Duplantier, Ann. Phys. (N.Y.) 104, 300 (1977).

    Google Scholar 

  34. H. Primack and U. Smilansky, Phys. Rev. Lett. 74, 4831 (1995).

    Google Scholar 

  35. O. Frank and B. Eckhardt, Phys. Rev. E 53, 4166 (1996).

    Google Scholar 

  36. M. Henseler, A. Wirzba, and T. Guhr, Ann. Phys. (N.Y.) 258, 286 (1997).

    Google Scholar 

  37. A. Richter, in Emerging Applications of Number Theory (The IMA Volumes in Mathe-matics and Its Applications, Vol. 109), D. A. Hejhal, “ J. Friedman, M. C. Gutzwiller, and A. M. Odlyzko, eds. (Springer, New York, 1999), p. 479.

    Google Scholar 

  38. C. Dembowski, H.-D. Gräf, A. Heine, T. Hesse, H. Rehfeld, and A. Richter, Phys. Rev. Lett., submitted.

  39. A. Richter, in Proc. 5th European Particle Accelerator Conference, S. Meyers et al., eds. (IOP Publishing, Bristol and Philadelphia, 1996), p. 110.

    Google Scholar 

  40. C. Dembowski, H.-D. Gräf, A. Heine, R. Hofferbert, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 84, 867 (2000).

    Google Scholar 

  41. T. Hesse, Dissertation, University of Ulm, Germany, 1997.

  42. E. B. Bogomolny, Physica D 31, 169 (1988).

    Google Scholar 

  43. H. Weyl, J. Reine Angew. Math. 141, 1 (1912); ibid. 163; J. Reine Angew. Math. 143, 177 (1913).

    Google Scholar 

  44. H. P. Baltes and E. R. Hilf, Spectra of Finite Systems (Bibliographisches Institut, Mannheim, 1975).

  45. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys. 53, 419 (1981).

    Google Scholar 

  46. M. V. Berry and M. Robnik, J. Phys. A 17, 2413 (1984).

    Google Scholar 

  47. M. Sieber, U. Smilansky, S. C. Creagh, and R. G. Littlejohn, J. Phys. A 26, 6217 (1993).

    Google Scholar 

  48. M. V. Berry, Proc. R. Soc. Lond. A 400, 229 (1985).

    Google Scholar 

  49. M. Sieber and F. Steiner, Physica A 44, 248 (1990).

    Google Scholar 

  50. D. Alonso and P. Gaspard, J. Phys. A 27, 1599 (1994).

    Google Scholar 

  51. J. Stein and H.-J. Stöckmann, Phys. Rev. Lett 68, 2867 (1992).

    Google Scholar 

  52. A. Dürer, Underweysung der Messung mit dem Zirckel un Richtscheyt in Linien, Ebnen und Ganzten Corporen, 2nd edn. (Uhl, Nördlinegn, 1983).

  53. M. V. Berry, Eur. J. Phys. 2, 91 (1981).

    Google Scholar 

  54. A. Bäcker, F. Steiner, and P. Stifter, Phys. Rev. E 52, 2463 (1995).

    Google Scholar 

  55. A. M. Ozorio de Almeida, Hamiltonian Systems: Chaos and Quantization (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  56. O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993).

    Google Scholar 

  57. M. Robnik, J. Phys. A 16, 3971 (1983); J. Phys. A 17, 1049 (1984).

    Google Scholar 

  58. R. Balian and B. Bloch, Ann. Phys. 64, 76 (1971).

    Google Scholar 

  59. U. Dörr, H.-J. Stöckmann, M. Barth, and U. Kuhl, Phys. Rev. Lett. 80, 1030 (1998).

    Google Scholar 

  60. M. V. Berry, Ann. Phys. 131, 163 (1981).

    Google Scholar 

  61. A. Delon, R. Jost, and M. Lombardi, J. Chem. Phys. 95, 5701 (1991).

    Google Scholar 

  62. T. Papenbrock, Phys. Rev. E 61, 4626 (2000). 354 Richter

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, A. Test of Trace Formulas for Spectra of Superconducting Microwave Billiards. Foundations of Physics 31, 327–354 (2001). https://doi.org/10.1023/A:1017594604474

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017594604474

Keywords

Navigation