Skip to main content
Log in

Form and Function: A Neuronal Dialog

  • Published:
Brain and Mind

Abstract

The emergence of functional maturity in the brain relies upon the interplay between form and function during its developmental history. This interaction continues throughout life and changes in neuronal function lead to changes in diverse structural scales in the brain. Both regulatory genes, which define compartments in the nervous system, and activity-dependent processes cooperate to determine neuronal phenotype and tissue structure. The influence of electrical activity as a regulator of early developmental events such as proliferation and migration is being considered. Spontaneous neuronal activity may influence early axonal and dendritic arbor formation and activity blockade alters branch density both for axon arbors and dendrites. Although large-scale changes in axon morphology may occur until late stages of development, the remodeling of axon and dendrite morphology in terms of their terminal arborization area is less pronounced than initially thought. Electrical (or ‘neural’) activity is important for synapse stabilization and circuit formation and sensory experience performs a refinement of neuronal shape. This fine-tuning appears to be a dynamical process sustained into adulthood, with smaller scale changes occurring mainly at the dendritic spine level. These subcellular compartments are now believed to restrict biochemical changes in dendrites to particular synapses during (or ‘undergoing’) synaptic plasticity. Events at dendritic spines underlie alterations in the morphology of individual neurons that will ultimately affect the function of complex neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendoerfer, K. L. and Shatz, C. J., 1994: The subplate, a transient neocortical structure: Its role in the development of connections between thalamus and cortex, Annu. Rev. Neurosci. 17, 185-218.

    PubMed  Google Scholar 

  • Altman, J., 1971: Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat, Brain Res. 30, 311-322.

    PubMed  Google Scholar 

  • Antonini, A. and Stryker, M. P., 1993: Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade, J. Neurosci. 13, 3549-3573.

    PubMed  Google Scholar 

  • Barron, D. H., 1943: The early development of the motor cells and columns in the spinal cord of the sheep, J. Comp. Neurol. 78, 1-26.

    Google Scholar 

  • Bedlack, R., Wei, M., Fox, S., Gross, E. and Loew, L., 1994: Distict electrical potentials in soma and neurite membranes, Neuron 13, 1187-1193.

    PubMed  Google Scholar 

  • Bhide, P. G. and Frost, D. O., 1991: Stages of growth of hamster retinofugal axons: Implications for developing axonal pathways with multiple targets, J. Neurosci. 11, 485-504.

    PubMed  Google Scholar 

  • Bliss, T. and Lomo T., 1973: Long-lasting potentiation of synaptic transmission in the dendate area of anesthetized rabbit following stimulation of the perforant path, J. Physiol. 232, 331-356.

    PubMed  Google Scholar 

  • Bliss, T. V. P. and Collingridge, G. L., 1993: A synaptic model of memory Long-term potentiation in the hippocampus, Nature 361, 31-39.

    PubMed  Google Scholar 

  • Bode-Greual, K. and Singer, W., 1989: The development of N-methyl-D-aspartate receptors in cat visual cortex, Dev. Brain Res. 46, 197-204.

    Google Scholar 

  • Borrell, V. and Callaway, E. M., 2002: Reorganization of exuberant axon arbors contributes to the development of laminar specificity in ferret visual cortex. J. Neurosci. 22, 6682-6695.

    PubMed  Google Scholar 

  • Boyer, C., Schikorski, T. and Stevens, C. F., 1998: Comparison of hippocampal dendritic spines in culture and in brain, J. Neurosci. 18, 5294-300.

    PubMed  Google Scholar 

  • Brandes, J. S., 1971: Dendritic branching patterns in lateral geniculate nucleus following deafferentation, Exp. Neurol. 31, 444-450.

    PubMed  Google Scholar 

  • Bresler, T., Ramati, Y., Zamorano, P. L., Zhai, R., Garner, C.C. and Ziv, N. E., 2001: The dynamics of SAP90PSD-95 recruitment to new synaptic junctions, Mol. Cell. Neurosci. 18, 149-167.

    PubMed  Google Scholar 

  • Brose, K. and Tessier-Lavigne, M., 2000: Slit proteins: Key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95-102.

    PubMed  Google Scholar 

  • Brostom, C. and Brostom, M., 1990: Calcium-dependent regulation of protein synthesis in intact mammalian cells, Annu. Rev. Physiol. 52, 577-590.

    PubMed  Google Scholar 

  • Brown, T., Chapman, P., Kairiss, E. and Keenan, C., 1988: Long-term potentiation, Science 242, 724-728.

    PubMed  Google Scholar 

  • Brunso-Bechtold, J. K. and Vinsant, S. L., 1990: An ultrastructural and morphometric study of the effect of removal of retinal input on the development of the dorsal lateral geniculate nucleus, J. Comp. Neurol. 301, 585-603.

    PubMed  Google Scholar 

  • Buonanno, A. and Fields, D. R., 1999: Gene regulation by patterned electrical activity during neural and skeletal muscle development, Curr. Opin. Neurobiol. 9, 110-120.

    PubMed  Google Scholar 

  • Buonomano, D. V. and Merzenich, M. M., 1998: Cortical plasticity: From synapses to maps, Annu. Rev. Neurosci. 21, 149-186.

    PubMed  Google Scholar 

  • Butler, A. B. and Hodos, W., 1996: Comparative Vertebrate Neuroanatomy, Wiley-Liss, New York.

    Google Scholar 

  • Callaway, E. M. and Katz, L. C., 1990: Emergence and refinement of clustered horizontal connections in cat striate cortex, J. Neurosci. 10, 1134-1153.

    PubMed  Google Scholar 

  • Campbell, D. S., Regan, A. G., Lopez, J. S., Tannahill, D., Harris, W. A., Holt, C. E. 2001: Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones, J. Neurosci. 21(21): 8538-8547.

    PubMed  Google Scholar 

  • Castellani, V., Yue, Y., Gao, P. P., Zhou, R., Bolz, J., 1998: Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits, J. Neurosci. 18, 4663-4672.

    PubMed  Google Scholar 

  • Chalupa, L. M. and Williams, R.W., 1984: Organization of the cat's lateral geniculate nucleus following interruption of prenatal binocular competition, Human Neurobiol 3, 103-108.

    Google Scholar 

  • Chiaia, N. L., Bauer, W. R., Bennett-Clarke, C. A. and Rhoades, R. W., 1992: Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissae-related patterns in the rat's somatosensory cortex, Dev. Brain Res. 66, 244-250.

    Google Scholar 

  • Cline, H. T. and Constantine-Paton, M., 1989: NMDA receptor antagonists disrupt the retinotectal topographic map, Neuron 3, 413-426.

    PubMed  Google Scholar 

  • Cline, H. T. and Constantine-Paton, M., 1990: NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection, J. Neurosci. 10, 1197-1216.

    PubMed  Google Scholar 

  • Cline, H. T., Debski, E. and Constantine-Paton, M., 1987: NMDA receptor antagonist desegregates eye-specific stripes, Proc. Natl. Acad. Sci. USA 84, 4342-4345.

    PubMed  Google Scholar 

  • ]Cooper, N. and Steindler, D., 1986: Lectins demarcate the barrel subfield in the somatosensory cortex of the early postnatal mouse, J. Comp. Neurol. 249, 157-169.

    PubMed  Google Scholar 

  • Coss, R. G. and Perkel, D. H., 1985: The function of dendritic spines: A review of theoretical issues, Behav Neural Biol. 44, 151-185.

    PubMed  Google Scholar 

  • Cotman, C. W., Matthews, D. A., Taylor, D., and Lynch, G., 1973: Synaptic rearrangement in the dentate gyrus: Histochemical evidence of adjustments after lesions in immature and adult rats. Proc. Natl. Acad. Sci. USA 70, 3473-3477.

    PubMed  Google Scholar 

  • Cotman, C., Monaghan, D. and Ganong, A., 1988: Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity, Ann. Rev. Neurosci. 11, 61-80.

    PubMed  Google Scholar 

  • Crain, B., Cotman, C., Taylor, D. and Lynch, G., 1973: Aquantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res. 63, 195-204.

    PubMed  Google Scholar 

  • Crowley, J. C. and Katz, L. C., 2000: Early development of ocular dominance columns. Science 290, 1321-1324.

    PubMed  Google Scholar 

  • Dailey, M. E. and Smith, S. J., 1996: The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983-2994.

    PubMed  Google Scholar 

  • Dalva, M. B., Ghosh, A. and Shatz, C. J., 1994: Independent control of dendritic and axonal form in the developing lateral geniculate nucleus, J. Neurosci. 14, 3588-3602.

    PubMed  Google Scholar 

  • Darwin, C., 1994: The Origin of Species by Means of Natural Selection, Senate, London.

    Google Scholar 

  • Davidson, E. H., 2001. Genomic regulatory systems: Development and evolution, Academic Press, New York.

    Google Scholar 

  • Dehay, C., Giroud, P., Berland, M., Smart, I. and Kennedy, H., 1993: Modulation of the cell cycle contributes to the parcellation of the primate visual cortex, Nature 366, 464-466.

    PubMed  Google Scholar 

  • Dehay, C., Savatier, P., Cortay, V. and Kennedy, H., 2001: Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons, J. Neurosci. 21, 201-214.

    PubMed  Google Scholar 

  • Deitch, J. S. and Rubel, E.W., 1984: Afferent influences on brain stem auditory nuclei of the chicken: The course and specificity of dendritic atrophy following deafferentation, J. Comp. Neurol. 229, 66-79.

    PubMed  Google Scholar 

  • Deller, T., Mundel, P. and Frostscher, M., 2000: Potential role of synaptopodin in spine motility by coupling actin to the spine apparatus, Hippocampus 10, 569-581.

    PubMed  Google Scholar 

  • Desmond, N. and Levy, W., 1985: Granule cell dendritic spines density in the rat hippocampus varies with spine shape and location, Neurosci. Lett. 54, 219-224.

    PubMed  Google Scholar 

  • Douglas, R. J. and Martin K. A. C., 1990. Neocortex. In: The synaptic organization of the brain, in G. M. Shepherd (ed), Oxford University Press, Oxford, Chap. 12.

    Google Scholar 

  • Drake, C. T., Milner, T. A. and Patterson, S. L., 1999: Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity, J. Neurosci. 19, 8009-8026.

    PubMed  Google Scholar 

  • Drakew, A., Frostscher, M., and Heimrich, B., 1999: Blockade of neuronal activity alters spine maturation of dentate granule cells but not their dendritic arborization, Neuroscience 94, 767-774.

    PubMed  Google Scholar 

  • Edelman, G. M., 1987: Neural Darwinism. Basic Books, New York.

    Google Scholar 

  • El-Hani, C. N. and Emmeche, C., 2000: On some theoretical grounds for an organism-centred biology: Property emergence, supervenience, and downward causation, Theory Biosci. 119, 234-275.

    Google Scholar 

  • Engert, F. and Bonhoeffer, T., 1999: Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66-70.

    PubMed  Google Scholar 

  • Erzurumlu, R. and Kind, P., 2001: Neural activity: Sculptor of barrels in the neocortex. TINS 24, 589-595.

    PubMed  Google Scholar 

  • Fazeli, A., Dickinson, S. L., Hermiston, M. L., Tighe, R.V., Steen, R. G., Small, C. G., Stoeckli, E. T., Keino-Masu, K., Masu, M., Rayburn, H., Simons, J., Bronson, R. T., Gordon, J. I., Tessier-Lavigne, M. and Weinberg, R. A., 1997: Phenotype of mice lacking functional deleted in colorectal cancer (DCC) gene. Nature 386, 796-804.

    PubMed  Google Scholar 

  • Finlay, B. L., Wikler, K. C. and Sengelaub, D. R., 1987: Regressive events in brain development and scenarios for vertebrate brain evolution. Brain Behav. Evol. 30, 102-117.

    PubMed  Google Scholar 

  • Fischer, M., Kaech, S., Knutti, D. and Matus, A, 1998: Rapid actin-based plasticity in dendritic spines, Neuron 20, 847-854.

    PubMed  Google Scholar 

  • Fischer, M., Kaech, S., Wagner, U., Brinkhaus, H. and Matus, A., 2000: Glutamate receptors regulate actin-based plasticity in dendritic spines, Nat. Neurosci. 3, 887-894.

    PubMed  Google Scholar 

  • Frank, E., 1987: The influence of neuronal activity on patterns of synaptic connections, TINS 10, 188-190.

    Google Scholar 

  • Freiwald, W. A., Kreiter, A. K. and Singer,W., 2001: Synchronization and assembly formation in the visual cortex, Prog. Brain. Res. 130, 111-140.

    PubMed  Google Scholar 

  • Friedman, H. V., Bresler, T., Garner, C. C. and Ziv, N. E., 2000: Assembly of new individual excitatory synapses: Time course and temporal order of synaptic molecule recruitment, Neuron 27, 3-5.

    PubMed  Google Scholar 

  • Frisen, J., 2002: Stem cell plasticity? Neuron 35, 415-418.

    PubMed  Google Scholar 

  • Fròes, M. M. and Menezes, J. R. L., 2002: Coupled heterocellular arrays in the brain. Neurochem. Int. 41, 364-375.

    Google Scholar 

  • Garraghty, P. E., Sur, M., Weller, R. and Sherman, S. M., 1986: Morphology of retinogeniculate X and Y axon arbors in monocularly enucleated cats, J. Comp. Neurol. 251, 198-215.

    PubMed  Google Scholar 

  • Geinisman, Y., Morrell, F. and Toledo-Morrell, L., 1989: Perforated synapses on double-headed dendritic spines: A possible structural substrate of synaptic plasticity, Brain Res. 480, 326-329.

    PubMed  Google Scholar 

  • Gentschev, T. and Sotelo, C., 1973: Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrstructural study, Brain Res. 62, 37-60.

    PubMed  Google Scholar 

  • Ghosh, A., Antonini, A., McConnell, S. and Shatz, C. J., 1990: Requirement for subplate neurons in the formation of thalamocortical connections, Nature 347, 170-181.

    Google Scholar 

  • Ghosh, A. and Shatz, C., 1992: Pathfinding and target selection by developing geniculocortical axons, J. Neurosci. 12, 39-55.

    PubMed  Google Scholar 

  • Ghosh, A. and Shatz, C., 1993: A role for subplate neurons in the patterning of connections from thalamus to neocortex, Development 117, 1031-1047.

    PubMed  Google Scholar 

  • Ghosh, A. and Shatz, C., 1994: Segregation of geniculocortical afferents during the critical period: A role for subplate neurons, J. Neurosci. 14, 3862-3880.

    PubMed  Google Scholar 

  • Goda, Y., 2002: Cadherins communicate structural plasticity of presynaptic and postsynaptic terminals, Neuron 35, 1-3.

    PubMed  Google Scholar 

  • Greenough, W. T. and Volkmar, F. R., 1973: Pattern of dendritic branching in occipital cortex of rats reared in complex environments, Exp. Neurol. 40, 491-504.

    PubMed  Google Scholar 

  • Gu, X. and Spitzer, N. C., 1995: Distinct aspects of neuronal differentiation encoded by frequency of spontaneus Ca2C transients. Nature 375, 784-787.

    PubMed  Google Scholar 

  • Guillery, R. and Kaas, J., 1974: The effects of monocular lid suture upon the development of the lateral geniculate nucleus in squirrels (Sciureus carolinensis), J. Comp. Neurol. 154, 433-441.

    PubMed  Google Scholar 

  • Guillery, R. W., 1972: Binocular competition in the control of geniculate cell growth, J. Comp. Neurol. 144, 117-130.

    PubMed  Google Scholar 

  • Guillery, R.W., 1973: Quantitative studies of transneuronal atrophy in the dorsal lateral geniculate nucleus of cats and kittens, J. Comp. Neurol. 149, 423-438.

    PubMed  Google Scholar 

  • Guthrie, P., Segal, M. E. and Kater, S., 1991: Independent regulation of calcium revealed by imaging dendritic spines, Nature 354, 76-79.

    PubMed  Google Scholar 

  • Hahm, J. O., Langdon, R. B. and Sur, M., 1991: Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors, Nature 351, 568-570.

    PubMed  Google Scholar 

  • Hanganu, I. L., Kilb, W. and Luhmann, H. J., 2002: Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J. Neuronsci. 22, 7165-7176.

    Google Scholar 

  • Harris, K. and Stevens, J., 1988: Dendritic spines of rat cerebellar Purkinje cells: Serial electron microscopy with reference to their biophysical characteristics, J. Neurosci. 8, 4455-4469.

    PubMed  Google Scholar 

  • Harris, K. and Stevens, J., 1989: Dendritic spines of CA1 pyramidal cells in the rat hippocampus: Serial electron microscopy with reference to their biophysical characteristics, J. Neurosci. 9, 2982-2997.

    PubMed  Google Scholar 

  • Harris, K. M., 1999: Structure, development ans plasticity of dendritic spines, Curr. Opin. Neurobiol. 9, 343-348.

    PubMed  Google Scholar 

  • Hatten, M. and Mason, C., 1986: Neuron-astroglia interactions in vitro and in vivo. Trends Neurosci. 9, 168-174.

    Google Scholar 

  • Haydar, T. F., Wang, F., Schwartz, M. L. and Rakic, P., 2000: Differential modulation of proliferation in the neocortical ventricular and subventricular zones, J. Neurosci. 20, 5764-5774

    PubMed  Google Scholar 

  • Hebb, D., 1949: Organization of Behavior, Wiley, New York.

    Google Scholar 

  • Hedin-Pereira, C., Lent, R. and Jhaveri, S., 1999: Morphogenesis of callosal arbors in the parietal cortex of hamsters, Cereb. Cortex, 9, 50-64.

    PubMed  Google Scholar 

  • Hedin-Pereira, C., Uziel, D. and Lent, R., 1992: Bicommissural neurons in the cerebral cortex of developing hamsters, NeuroReport 3, 873-876.

    Google Scholar 

  • Herrmann, K., Antonini, A. and Shatz, C., 1994: Ultrastructural evidence for synaptic interactions between thalamocortical axons and subplate neurons. Eur. J. Neurosci. 6, 1729-1742.

    PubMed  Google Scholar 

  • Herrmann, K., Wong, R. and Shatz, C., 1992: Effects of intraocular activity blockade on the morphology of developing dLGN neurons in the cat, in P. Bagnoli and W. Hodos (eds.), The Changing Visual System, Plenum Press, New York.

    Google Scholar 

  • Hinds, J. and Hinds, P., 1976: Synapse formation in the mouse olfatory bulb. II. Morphogenesis, J. Comp. Neurol. 169, 41-62.

    PubMed  Google Scholar 

  • Jhaveri, S., Edwards, M. A. and Schneider, G. E., 1991: Initial stages of retinofugal axon development in the hamster: Evidence for two distinct modes of growth, Exp. Brain Res. 87, 371-382.

    PubMed  Google Scholar 

  • Katz, L. C., 1991: Specificity in the development of vertical connections in the striate cortex, Eur. J. Neurosci. 3, 1-9.

    PubMed  Google Scholar 

  • Katz, L. C. and Callaway, E. M, 1991: Emergence and refinement of local circuits in cat striate cortex, in Development of the Visual System, MIT Press, Cambridge, MA, pp. 197-215.

    Google Scholar 

  • Katz, L. C. and Crowley, J. C, 2002: Development of cortical circuits: Lessons from ocular dominance columns. Nat. Rev. Neurosci. 3, 34-42.

    PubMed  Google Scholar 

  • Katz, L. C. and Shatz, C. J., 1996. Synaptic activity and the construction of cortical circuits. Science, 274, 1133-1138.

    PubMed  Google Scholar 

  • Kennedy, M., 1989: Regulation of neuronal function by calcium, Trends Neurosci. 12, 417-420.

    Google Scholar 

  • Koch, C. and Poggio, T., 1983: Electrical properties of dendritic spines, Trends Neurosci. 6, 80-83.

    Google Scholar 

  • Koch, C. and Zador, A., 1993: The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization, J. Neurosci. 13, 413-422.

    PubMed  Google Scholar 

  • Kojima, M., Takei, N., Numakawa, T., Ishikawa, Y., Susuki, S., Matsumoto, T., Katoh-Semba, R., Nawa, H. and Hatanaka, H., 2001: Biological characterization and optical imaging of brain-derived neurotrophic factor-green fluorescent protein suggest an activity-dependent local release of brain-derived neurotrophic factor in neurites of cultured hippocampal neurons, J. Neurosci. Res. 64, 1-10.

    PubMed  Google Scholar 

  • Komatsu, Y., Fujii, K., Maeda, J., Sakaguch, I. H. and Toyama, K., 1988: Long-term potentiation of synaptic transmission in kitten visual cortex, J. Neurophysiol. 59, 124-141.

    PubMed  Google Scholar 

  • Korkotian, E. and Segal, M., 2001: Regulation of dendritic spine motility in cultured hippocampal neurons, J. Neurosci. 21, 6115-6124.

    PubMed  Google Scholar 

  • Kozloski, J., Hamzei-Sichani, F. and Yuste, R., 2001: Stereotyped position of local synaptic targets in neocortex. Science 293, 868-872.

    PubMed  Google Scholar 

  • Landis, D. M., 1987: Initial junctions between developing parallel fibers and Purkinje cells are different from mature synaptic junctions, J. Comp. Neurol. 260, 513-525.

    PubMed  Google Scholar 

  • Lent, R., Hedin-Pereira, C., Menezes, J. R. L. and Jhaveri, S., 1990: Neurogenesis and development of callosal and intracortical connections in the hamster, Neuroscience 38, 21-37.

    PubMed  Google Scholar 

  • LeVay, S., Stryker, M. P. and Shatz, C. J., 1978: Ocular dominance columns and their development in layer IV of the cat's visual cortex: A quantitative study, J. Comp. Neurol. 179, 223-244.

    PubMed  Google Scholar 

  • Leventhal, A., Schall, J. and Ault, S., 1988: Extrinsic determinants of retinal ganglion cell structure in the cat, J. Neurosci. 8, 2028-2038.

    PubMed  Google Scholar 

  • Linke, R., Soriano, E. and Frotscher, M., 1994: Transient dendritic appendages on differentiating septohippocampal neurons are not sites of synaptogenesis, Dev. Brain Res. 83, 67-78.

    Google Scholar 

  • Lo, Y.-J. and Poo, M.-M., 1994: Heterosynaptic supression of developing neuromuscular synapses in culture, J. Neurosci. 14, 4684-4693.

    PubMed  Google Scholar 

  • Luskin, M. B. and Shatz, C. J., 1985: Neurogenesis of the cat's primary visual cortex, J. Comp. Neurol. 242, 611-631.

    PubMed  Google Scholar 

  • Maletic-Savatic, M., Malinow, R. and Svoboda, K., 1999: Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity, Science 283, 1923-1927.

    PubMed  Google Scholar 

  • Mariani, J., Crepel, F., Mikoshiba, K., Changeux, J. and Sotelo, C., 1977: Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse, Philos. Trans. R. Soc. Lond. B Biol. Sci. 281, 1-28.

    PubMed  Google Scholar 

  • Marin, O. and Rubenstein, J. L., 2001: A long, remarkable journey: Tangential migration in the telencephalon. Nat. Rev. Neurosci. 2, 780-790.

    PubMed  Google Scholar 

  • Marrs, G. S., Green, S. H. and Dailey, M. E., 2001: Rapid formation and remodelling of postsynaptic densities in developing dendrites, Nature Neurosci 4, 1006-1113.

    PubMed  Google Scholar 

  • Mattson, M., 1988: Neurotransmitters in the regulation of neuronal cytoarchitecture, Brain Res. Rev. 13, 179-212.

    Google Scholar 

  • Matus, A., Brinkhaus, H. and Wagner, U., 2000: Actin dynamics in dendritic spines: A form of regulated plasticity at excitatory synapses, Hippocampus 10, 555-560.

    PubMed  Google Scholar 

  • Mayr, E., 1998: O desenvolvimento do pensamento biológico, Universidade de Brasília, Brasília.

    Google Scholar 

  • Meister, M., Wong, R. O. L., Baylor, D. A. and Shatz, C. J., 1991: Synchronous bursts of action potentials in ganglion cells of developing mammalian retina, Science 252, 939-943.

    PubMed  Google Scholar 

  • Mugnaini, E., 1969: Maturation of nerve cell populations and establishment of synaptic connections in the cerebellar cortex of the chick, in R. Llin´as (ed.), Neurobiology of Cerebellar Evolution and Development, American Medical Association, Chicago, pp. 749-782

    Google Scholar 

  • Muller, D., Toni, N. and Buchs, P. A., 2000: Spine changes associated with long-term potentiation, Hippocampus 10, 594-604.

    Google Scholar 

  • Muller, W. and Connor, J., 1991: Dendritic spines as individual neuronal compartments for synaptic Ca2C responses, Nature 354, 73-76.

    PubMed  Google Scholar 

  • Murase, S., Mosser, E. and Schuman, E. M., 2002: Depolarization drives beta-catenin into neuronal spines promoting changes in synaptic structure and function, Neuron 35, 91-105.

    PubMed  Google Scholar 

  • Murphey, R., Mendenhall B., Palka, J. and Edwards, J., 1975: Deafferentation slows the growth of specific dendrites of identified giant interneurons, J. Comp. Neurol. 159, 407-418.

    PubMed  Google Scholar 

  • Nicholson, C., 1980: Dynamics of the brain cell microenvironment, Neurosci. Res. Prog. Bull. 18, 177-322.

    Google Scholar 

  • Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. and Prochiantz, A., 1984: Magnesium gates glutamate-activated channels in mouse central neurons, Nature 307, 462-465.

    PubMed  Google Scholar 

  • Okabe, S., Miwa, A. and Okado, H., 2001: Spine formation and correlated assembly of presynaptic and postsynaptic molecules, J. Neurosci. 21, 6105-6114.

    PubMed  Google Scholar 

  • O'Leary, D. D. M. and Terashima, T., 1988: Cortical axons branch to multiple subcortical targets by interstitial budding: Implications for target recognition and “waiting periods', ” Neuron 1, 901-910.

    PubMed  Google Scholar 

  • O'Leary, D.D. and Nakagawa,Y., 2002: Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex, Curr. Opin. Neurobiol. 12, 14-25.

    PubMed  Google Scholar 

  • Panchision, D. M. and McKay, R. D., 2002: The control of neural stem cells by morphogenic signals, Curr. Opin. Gen. Dev. 12, 478-487.

    Google Scholar 

  • Perkel, D. H. and Perkel, D. J., 1985: Dendritic spines: Role of active membrane in modulating synaptic efficacy, Brain Res. 325, 331-335.

    PubMed  Google Scholar 

  • Perry, V. H. and Linden, R., 1982: Evidence for dendritic competition in the developing retina, Nature 297, 683-685.

    PubMed  Google Scholar 

  • Perry, V. H. and Maffei, L., 1988: Dendritic competition: Competition for what? Dev. Brain Res. 41, 195-208.

    Google Scholar 

  • Purves, D. and Lichtman, J.W., 1985: Geometrical differences among homologous neurons in mammals, Science 228, 298-302.

    PubMed  Google Scholar 

  • Rabacchi S., Baily, Y., Delhaye-Bouchaud, N. and Mariani, J., 1992: Involvement of the N-methyl-D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256, 1823-1825.

    PubMed  Google Scholar 

  • Rajan, I. and Cline, H. T., 1998: Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836-7846.

    PubMed  Google Scholar 

  • Rajan, I., Witte, S., Cline, H. T., 1999: NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J. Neurobiol. 38, 357-368.

    PubMed  Google Scholar 

  • Rakic, P., 1976: Prenatal genesis of connections subserving ocular dominance in the rhesus monkey, Nature 261, 467-471.

    PubMed  Google Scholar 

  • Rakic, P., Bourgeois, J., Eckenhoff, M., Zecevic, N. and Goldman-Rakic, S., 1986: Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232, 232-235.

    PubMed  Google Scholar 

  • Rall,W., 1978: Dendritic spines and synaptic potency, in Studies in Neurophysiology, Porter, Cambridge, pp. 203-209.

    Google Scholar 

  • Ramoa, A. and McCormick, D., 1994: Developmental changes in eletrophysiological properties of LGNd neurons during reorganization of retinogeniculate connections, J. Neurosci. 14, 2089-2097.

    PubMed  Google Scholar 

  • Ramon y Cajal, 1893: La rétine des vertebrés, La Cellule 9, 119-258.

    Google Scholar 

  • Ramon y Cajal, S., 1911: Histologie du systeme nerveux chez l'homme et chez les vertebras, vol, 2 L. Azoulay (trans.) Paris: Maloina. Republished in 1955. marked: Instituto Ramony cage.

  • Redies, C. and Puelles, L., 2001: Modularity in vertebrate brain development and evolution, BioEssays 23, 1100-1111.

    PubMed  Google Scholar 

  • Redmond, L., Kashani, A. H. and Ghosh, A., 2002: Calcium regulation of dendritic growth via CaM Kinase IV and CREB-mediated transcription, Neuron 34, 999-1010.

    PubMed  Google Scholar 

  • Reese, B. E., 1986: The topography of expanded uncrossed retinal projections following neonatal enucleation of one eye: Differing effects in dorsal lateral geniculate nucleus and superior colliculus, J. Comp. Neurol. 250, 8-32.

    PubMed  Google Scholar 

  • Riccio, R. V. and Matthews, M., 1987: Effects of intraocular tetrotoxin on the postnatal development of the dorsal lateral geniculate nucleus of the rat: A Golgi analysis, J. Neurosci. Res. 17, 440-451.

    PubMed  Google Scholar 

  • Rocha, M., 1995: Dendritic development of neurons of the ferret lateral geniculate nucleus: Role of NMDA receptors, PhD dissertation, Universidade Federal do Rio de Janeiro, Brazil.

    Google Scholar 

  • Rocha, M. and Sur, M., 1995: Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-D-aspartate receptors, Proc. Natl. Acad. Sci. USA 92, 8026-8030.

    PubMed  Google Scholar 

  • Roe, A., Pallas, S. L., Hahm, J.-O. and Sur, M., 1990: A map of visual space induced in primary auditory cortex, Science 250, 818-820.

    PubMed  Google Scholar 

  • Ruiz i Atalba, A., Gitton, G. and Dahmane, N. 2001: Embryonic regionalization of the neocortex. Mech. Dev. 107, 1-14.

    Google Scholar 

  • Rutishauser, U. and Landmesser, L., 1991: Polysialic acid on the surface of axons regulates patterns of normal and activity-dependent innervation, Trends Neurosci. 14, 528-532.

    PubMed  Google Scholar 

  • Schuman, E. M. and Madison, D. V., 1991: A requirement for the intercellular messenger nitric oxide in long-term potentiation, Science 254, 1503-1506.

    PubMed  Google Scholar 

  • Serafini, T., Colamarino, S. A., Leonardo, E. D., Wang, H., Beddington, R., Skarnes, W. C. and Tessier-Lavigne, M., 1996: Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001-1014.

    Google Scholar 

  • Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K. and Malinow, R., 1999: Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation, Science 284, 1811-1816.

    PubMed  Google Scholar 

  • Sholl, D. A., 1955: The surface area of cortical neurons. J. Anat. (London) 89, 571-572.

    Google Scholar 

  • Silberberg, G., Gupta, A. and Markram, H., 2002: Stereotypy in neocortical microcircuits, Trends Neurosci. 25, 227-230.

    PubMed  Google Scholar 

  • Shu, T., Valentino, K. M., Seaman, C., Cooper, H.M. and Richards, L. J., 2000: Expression of the netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain, J. Comp. Neurol. 416, 201-212.

    PubMed  Google Scholar 

  • Smetters, D. K., Hahm, J. and Sur, M., 1994: N-methyl-D-aspartate receptor antagonist does not prevent eyespecific segregation in the ferret retinogeniculate pathway, Brain Res. 658, 168-178.

    PubMed  Google Scholar 

  • Sretavan, D. W. and Shatz, C., 1986a: Prenatal development of retinal ganglion cell axons: Segregation into eye-specific geniculate layers from the intermixed state, J. Neurosci. 6, 234-251.

    PubMed  Google Scholar 

  • Sretavan, D. W. and Shatz, C. J., 1986b: Prenatal development of cat retinogeniculate axon arbors in the absence of binocular interactions, J Neurosci. 6, 990-1003

    PubMed  Google Scholar 

  • Star, E. N., Kwiatkowski, D. J. and Murthy, V. N., 2002: Rapid turnover of actin in dendritic spines and its regulation by activity, Nat. Neurosci. 5, 239-246.

    PubMed  Google Scholar 

  • Stellwagen, D. and Shatz, C. J., 2002: An instructive role for retinal waves in the development of retinogeniculate connectivity, Neuron 33, 357-367.

    PubMed  Google Scholar 

  • Steward, O. and Levy, W. B., 1982: Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus, J. Neurosci. 2, 284-291.

    PubMed  Google Scholar 

  • Steward, O., Wallace, C. S., Lyford, G. L. and Worley, P. F. 1998: Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741-751.

    PubMed  Google Scholar 

  • Stryker, M. P. and Harris, W. A., 1986: Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci., 6, 2117-2133.

    PubMed  Google Scholar 

  • Sur, M. and Leamey, C. A., 2001: Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251-262.

    PubMed  Google Scholar 

  • Sutton, J. K. and Brunso-Bechtold, J. K., 1993: Dendritic development in the dorsal lateral geniculate nucleus of ferrets in the postnatal absence of retinal input: A Golgi study, J. Neurobiol. 24, 317-334.

    PubMed  Google Scholar 

  • Tessier-Lavigne M. and Goodman C. S., 1996: The molecular biology of axon guidance, Science 274, 1123-1133.

    PubMed  Google Scholar 

  • Threadgill, R., Bobb, K. and Ghosh, A., 1997: Regulation of dendritic growth and remodeling by Rho, Rac and Cdc42, Neuron 19, 625-634.

    PubMed  Google Scholar 

  • Togashi, H., Abe, K., Mizoguchi, A., Takaoka, K., Chisaka, O. and Takeichi, M., 2002: Cadherin regulates dendritic spines morphogenesis, Neuron 45, 1-3.

    Google Scholar 

  • Torre, E. R. and Steward, O., 1992: Demonstration of local protein synthesis within dendrites using a new culture system that permits the isolation of living axons and dendrites from their cell bodies, J. Neurosci. 12, 762-772.

    PubMed  Google Scholar 

  • Voyvodic, J. T., 1987: Development and regulation of dendrites in the rat superior cervical ganglion, J. Neurosci. 7, 904-912.

    PubMed  Google Scholar 

  • Weeks, A. C., Ivanco, T. L., Leboutillier, J. C., Racine, R. J. and Petit, T. L., 2001: Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus: III. Long-term maintenance phase. Synapse 40, 74-84.

    PubMed  Google Scholar 

  • Wiesel, T. N. and Hubel, D. H., 1965: Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens, J. Neurophysiol. 28, 1029-1040.

    PubMed  Google Scholar 

  • Williams, C. V., Davenport, R. W., Dou, P. and Kater, S. B., 1995: Developmental regulation of plasticity along neurite shafts, J. Neurobiol. 27, 127-140.

    PubMed  Google Scholar 

  • Whitford, K. L., Dijkhuizen, P., Polleux, F., and Ghosh, A., 2002: Molecular control of cortical dendrite development, Annu. Rev. Neurosci. 25, 127-149.

    PubMed  Google Scholar 

  • Wong, R., Yamawaki, R. and Shatz, C., 1992: Synaptic contacts and the transient dendritic spines of developing retinal ganglion cells, Eur. J. Neurosci. 4, 1387-1397.

    PubMed  Google Scholar 

  • Wu, G.-Y., Zou, D. G., Rajan, I. and Cline, H., 1999: Dendritic dynamics in vivo change during neuronal maturation, J. Neurosci. 19, 4472-4483.

    PubMed  Google Scholar 

  • Wu, H. H., Williams, C. V. and Mcloon, S. C., 1994: Involvement of nitric oxide in the elimination of a transient retinotectal projection in development, Science 265, 1593-1596.

    PubMed  Google Scholar 

  • Xia, Z., Dudek, H., Miranti, C. K., Greenberg, M. E., 1996: Calcium influx viaNMDA receptor induces immediate early gene transcription by a MAP Kinase/ERK-dependent mechanism, J. Neurosci. 16, 5425-5436.

    PubMed  Google Scholar 

  • Yao, W. D., Rusch, J., Poo, M.-M., Wu, C. F., 2000: Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: Effects of cAMP-pathway mutations, J. Neurosci. 20, 2626-2637.

    PubMed  Google Scholar 

  • Yawo, H., 1987: Changes in the dendritic geometry of mouse superior cervical ganglion cells following postganglionic axotomy, J. Neurosci. 7, 3703-3711.

    PubMed  Google Scholar 

  • Ziv, N. E. and, Smith, S., 1996: Evidence for a role of dendritic filopodia in synaptogenesis and spine formation, Neuron 17, 91-102.

    PubMed  Google Scholar 

  • Zou, D. J. and Cline, H. T., 1999. Postsynaptic calcium/calmodulin Kinase II is required to limit elaboration of presynaptic and postsynaptic arbors, J. Neurosci. 19, 8909-8918.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, M., Furtado, D.A., Menezes, J.R.L. et al. Form and Function: A Neuronal Dialog. Brain and Mind 4, 3–25 (2003). https://doi.org/10.1023/A:1024156030989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024156030989

Navigation