Skip to main content
Log in

The logic of reduction: The case of gravitation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The reduction from Einstein's to Newton's gravitation theories (and intermediate steps) is used to exemplify reduction in physical theories. Both dimensionless and dimensional reduction are presented, and the advantages and disadvantages of each are pointed out. It is concluded that neither a completely reductionist nor a completely antireductionist view can be maintained. Only the mathematical structure is strictly reducible. The interpretation (the model, the central concepts) of the superseded theory T′ can at best only partially be derived directly from the superseding theory T; it is severely constrained by the mathematical structure, and it can involve qualitatively different central terms that cannot be logically related between T and T′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Nagel,The Structure of Science (Harcourt, Brace & World, New York, 1961).

    Google Scholar 

  2. R. M. Yoshida,Reduction in the Physical Sciences (Dalhousie University Press, Halifax, 1977).

    Google Scholar 

  3. P. K. Feyerabend, “Explanation, Reduction, and Empiricism,” inMinnesota Studies in the Philosophy of Science, Vol. III, H. Feigl and G. Maxwell, eds. (University of Minnesota, Minneapolis, 1962), pp. 28–97.

    Google Scholar 

  4. T. S. Kuhn,The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 19709), 2nd edn.

  5. R. M. Wald,General Relativity (University of Chicago Press, Chicago, 1984).

    Google Scholar 

  6. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Fransisco, 1973).

    Google Scholar 

  7. W. Rindler,Essential Relativity (Springer, New York, 1977), 2nd edn.

    Google Scholar 

  8. T. Damour, “The Problem of Motion in Newtonian and Einsteinian Gravity,” in300 Years of Gravitation. S. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1987), pp. 128–198.

    Google Scholar 

  9. R. Geroch,Comm. Math. Phys. 13, 180–193 (1969).

    Google Scholar 

  10. M. Fierz and W. Pauli,Proc. R. Soc. London A 173, 211–232 (1939).

    Google Scholar 

  11. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973), p. 186.

    Google Scholar 

  12. P. Havas and J. N. Goldberg,Phys. Rev. 128, 398 (1962).

    Google Scholar 

  13. S. Deser,Gen. Relativ. Gravit. 1, 9 (1970).

    Google Scholar 

  14. T. Biswas,Am. J. Phys. 56, 1032 (1988).

    Google Scholar 

  15. E. Cartan,Ann. Ecole Norm. 40, 325–412 (1923);41, 1–25 (1924).

    Google Scholar 

  16. K. Friedrichs,Math. Ann. 98, 566–575 (1927).

    Google Scholar 

  17. E. Inönü and E. P. Wigner,Proc. Natl. Acad. Sci. USA 39, 510 (1953).

    Google Scholar 

  18. P. Havas,Rev. Mod. Phys. 36, 938–965 (1964).

    Google Scholar 

  19. D. B. Malament, “Newtonian Gravity, Limits, and the Geometry of Space and Time,” inFrom Quarks to Quasars, R. G. Colodny, ed. (University of Pittsburgh Press, 1986), pp. 181–201.

  20. J. Ehlers, “Uber den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie,” inGrundprobleme der modernen Physik, J. Nitschet al., eds. (Bibliographisches Institut, 1981).

  21. E. Ehlers, “On limit relations between, and approximative explanations of, physical theories,” inLogic, Methodology, and Philosophy of Science, Vol. VII, R. Marcuset al., eds. (Elsevier Science Publishers, New York, 1986), pp. 387–403.

    Google Scholar 

  22. E. J. Moniz and D. H. Sharp,Phys. Rev. D 15, 2850 (1977); see also Sec. 3 in F. Rohrlich, “Fundamental Physical Problems of Quantum Electrodynamics,” inFoundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum Press, New York, 1980).

    Google Scholar 

  23. C. G. Hempel, “On the ‘standard Conception’ of Scientific Theories,” inMinnesota Studies in the Philosophy of Science, Vol. IV, M. Radner and S. Winokur, eds. (University of Minnesota Press, Minneapolis, 1970), pp. 142–163.

    Google Scholar 

  24. C. G. Hempel and P. Oppenheim,Philos. Sci. 15, 135–175 (1948).

    Google Scholar 

  25. C. A. Hooker,Dialogue 20, 38, 201, 496 (1981).

    Google Scholar 

  26. F. Rohrlich,Br. J. Philos. Sci. 39, 295 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohrlich, F. The logic of reduction: The case of gravitation. Found Phys 19, 1151–1170 (1989). https://doi.org/10.1007/BF00731877

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00731877

Keywords

Navigation