Skip to main content
Log in

Schrödinger and Dirac equations for the hydrogen atom, and Laguerre polynomials

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

It is usually claimed that the Laguerre polynomials were popularized by Schrödinger when creating wave mechanics; however, we show that he did not immediately identify them in studying the hydrogen atom. In the case of relativistic Dirac equations for an electron in a Coulomb field, Dirac gave only approximations, Gordon and Darwin gave exact solutions, and Pidduck first explicitly and elegantly introduced the Laguerre polynomials, an approach neglected by most modern treatises and articles. That Laguerre polynomials were not very popular before their use in quantum mechanics, probably because they had been little used in classical mathematical physics, is confirmed by the fact that, as we show, they had been rediscovered independently several times during the nineteenth century, in published or unpublished studies of Abel, Murphy, Chebyshev, and Laguerre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhieser, N.I. 1998. Function theory according to Chebyshev. In Mathematics of the XIXth century, vol. 3, ed. A.N. Kolmogorov and A.P. Yushkevich, 1–81. Basel: Birkhäuser.

  • Anonymous. 1952. Dr. F.B. Pidduck. Nature No. 4317. July 26: 141.

  • Askey, R. 1982. Comments to (Szegö, 1968). In Collected papers of G. Szegö, vol. 3, ed. R. Askey, 866–869. Boston: Birkhäuser.

  • Auvil P.B., Brown L.M. (1978) The relativistic hydrogen atom: a simple solution. American Journal of Physics 46: 679–681

    Article  Google Scholar 

  • Bacry H., Boon M. (1985) Lien entre certains polynômes et quelques fonctions transcendantes. Comptes Rendus de l’Academie des Sciences Paris I 301: 273–276

    MATH  MathSciNet  Google Scholar 

  • Bernkopf, M. 1991. Laguerre, Edmond Nicolas. In Biographical dictionary of mathematics, vol. 3, ed. C.C. Gillipsie, 1315–1317. New York: Charles Scribner’s Sons.

  • Bethe, H.A., and E.E. Salpeter. 1957. Quantum mechanics of one- and two-electrons systems. In Handbuch der Physik, vol. 35, ed. S. Flügge, 88–436. Berlin: Springer.

  • Bloch, F. 1976. Heisenberg and the early days of quantum mechanics. Physics Today. December: 23–27.

  • Brezinski, C., A. Draux, A.P. Magnus, P. Maroni, and A. Ronveaux, eds. 1985. Polynômes orthogonaux et applications (Bar-le-Duc, 1984). Lecture Notes in Mathematics No. 1171. Berlin: Springer.

  • Buchholz H. (1969) The confluent hypergeometric function. Springer, Berlin

    MATH  Google Scholar 

  • Chatterji, S.D. 1997–1998. Cours d’analyse, 3 vol. Lausanne: Presses polytechniques et universitaires romandes.

  • Chebychev, P.L. 1858. Sur les fractions continues. J. Math. Pures Appl. 3 (2): 289–323. Oeuvres. St. Petersburg: Acad. Imp. Sciences. Reprint New York: Chelsea, 1962, vol. 1: 201–230.

  • Chebyshev, P.L. 1859. Sur le développement des fonctions à une seule variable. Bull. Phys.-Math. Acad. Imp. St. Pétersbourg 1: 193–200. Oeuvres. St. Petersburg: Acad. Imp. Sciences. Reprint New York: Chelsea, vol. 1: 501–508.

    Google Scholar 

  • Courant R., Hilbert D. (1924) Methoden der Mathematischen Physik, vol. 1. Springer, Berlin

    Google Scholar 

  • Darwin C.G. (1927) The electron as a vector wave. Proceedings of the Royal Society of London Series A 116: 227–253

    Article  Google Scholar 

  • Darwin C.G. (1928) The wave equation of the electron. Proceedings of the Royal Society of London Series A 118: 654–680

    Article  Google Scholar 

  • Davis L. Jr. (1939) A note on the wave equations of the relativistic atom. Physical Review 56: 186–187

    Article  MATH  Google Scholar 

  • de Broglie L. (1923a) Ondes et quanta. Comptes Rendus de l’Academie des Sciences Paris 177: 507–510

    Google Scholar 

  • de Broglie L. (1923b) Quanta de lumière, diffraction et interférences. Comptes Rendus de l’Academie des Sciences Paris 177: 548–550

    Google Scholar 

  • de Broglie L. (1923c) Les quanta, la théorie cinétique des gaz et le principe de Fermat. Comptes Rendus de l’Academie des Sciences Paris 177: 630–632

    Google Scholar 

  • de Broglie L. (1934) L’électron magnétique (Théorie de Dirac). Hermann, Paris

    Google Scholar 

  • Dehesa, J.S., F. Dominguez Adame, E.R. Arriola, and A. Zarzo. 1991. Hydrogen atom and orthogonal polynomials. In Orthogonal polynomials and their applications (Erice, 1990). IMACS Annals Computing and Applied Mathematics, vol. 9, 223–229. Basel: Baltzer.

  • Dieudonné, J. 1985. Fractions continuées et polynomes orthogonaux dans l’oeuvre de E.N. Laguerre. In Polynômes orthogonaux et applications (Bar-le-Duc, 1984). Lecture Notes in Mathematics No. 1171, 1–15. Berlin: Springer.

  • Dirac P.A.M. (1928) The quantum theory of the electron I. Proceedings of the Royal Society of London A 117: 610–624

    Article  Google Scholar 

  • Dirac P.A.M. (1930) The principles of quantum mechanics. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Durán J., Grünbaum F.A. (2004) Orthogonal matrix polynomials satisfying second-order differential equations. International Mathematics Research Notices 10: 461–484

    Article  Google Scholar 

  • Durán J., Grünbaum F.A. (2006) P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac’s equation. Journal of Physics A: Mathematical and General 39: 3655–3662

    Article  MATH  MathSciNet  Google Scholar 

  • Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G. (1953) Higher transcendental functions, 3 vol. McGraw-Hill, New York

    Google Scholar 

  • Favard, J. 1960–1963. Cours d’analyse de l’École Polytechnique, 3 vol. Paris: Gauthier-Villars.

  • Fejér, L. 1908. Sur une méthode de M. Darboux. Comptes Rendus de l’Académie des sciences Paris 147: 1040–1042. Leopold Fejér Gesammelte Arbeiten, vol. I, ed. P. Turán, 444–445. Basel: Birkhäuser.

  • Fejér, L. 1909. On the determination of asymptotic values (Hungarian). Mat. és Term. Értesitó 27: 1–33. German translation in Leopold Fejér Gesammelte Arbeiten, vol. I. Basel-Birkhäuser, 1970: 474–502.

  • Feynman R.P., Leighton R.B., Sands M. (1966) The Feynman lectures on physics. Quantum mechanics. Addison Wesley, Boston

    Google Scholar 

  • Frank, Ph., and R. von Mises. 1925–1935. Die Differential- und Integralgleichungen der Mechanik und Physik. Braunschweig: Vieweg. Vol. 1, 1st ed. Vol. 1, 1925. Vol. 2 1928. 2nd Vol. 1, 1930. Vol. 2, 1935.

  • Gautschi, W. 1981. A survey of Gauss-Christoffel quadrature formula. In E.B. Christoffel. The influence of his work on mathematics and the physical sciences, ed. P.L. Butzer and F. Fehér, 72–147. Basel: Birkhäuser.

  • Gerber J. (1969) Geschichte der Wellenmechanik. Archive for History of Exact Sciences 5: 349–416

    Article  MATH  MathSciNet  Google Scholar 

  • Gordon W. (1928) Die Energieniveaus der Wassenstoffatoms nach der Diracschen Quantentheorie des Elektrons. Z. f. Phys. 48: 11–14

    Article  Google Scholar 

  • Goursat, É. 1910–1915. Cours d’analyse mathématique, 3 vol. Paris: Gauthier-Villars.

  • Hadamard, J. 1927–1930. Cours d’analyse de l’École Polytechnique, 2 vol. Paris: Hermann.

  • Hendriksen, E., and H. van Rossum. 1985. Semi-classical orthogonal polynomials. In Orthogonal polynomials and applications (Bar-le-Duc 1984). Lecture Notes in Mathematics No. 1171, 354–361. Berlin: Springer.

  • Henrici, P. 1974–1986. Applied and computational complex analysis, 3 vol. New York: Wiley-Interscience.

  • Hermite, Ch., H. Poincaré, É. and Rouché, eds. 1898–1905. Oeuvres de Laguerre, 2 vol. Paris: Gauthier-Villars. Reprinted New York: Chelsea, 1972.

  • Hill E.L., Landshoff R. (1938) The Dirac electron theory. Reviews of Modern Physics 10: 87–132

    Article  MATH  Google Scholar 

  • Hille, E., J. Shohat, and J.L. Walsh. 1940. A bibliography of orthogonal polynomials. Bulletin of the National Research Council No. 103. Washington, DC.

  • Humbert P. (1922) Monographie des polynômes de Kummer. Ann. de Math. 1(5): 81–92

    Google Scholar 

  • Ince, E.L.(1927). Ordinary differential equations. London: Longmans. Reprint New York: Dover, 1958.

  • Ivory J., Jacobi C.G.J. (1837) Sur le développement de \({(1-2xz+z^2)^{-1/2}}\) . J. Math. Pures Appl. 2: 105–106

    Google Scholar 

  • Jammer M. (1966) The conceptual development of quantum mechanics. Mc-Graw-Hill, New York

    Google Scholar 

  • Jordan, C. 1887. Cours d’analyse de l’École Polytechnique. 3 vol. Paris: Gauthier-Villars. 2e éd, 1893.

  • Kragh H.S. (1981) The genesis of Dirac’s relativistic theory of electrons. Archive for History of Exact Sciences 24: 31–67

    Article  MATH  MathSciNet  Google Scholar 

  • Kragh H.S. (1982) Erwin Schrödinger and the wave equation: the crucial phase. Centaurus 26: 154–197

    Article  MATH  MathSciNet  Google Scholar 

  • Kragh H.S. (1990) Dirac. A scientific biography. Cambridge University Press, Cambridge

    Google Scholar 

  • Krein M.G. (1949) Infinite j-matrices and a matrix moment problem (Russian). Doklady Akademii Nauk SSSR 69: 125–128

    MATH  MathSciNet  Google Scholar 

  • Kubli F. (1970) Louis de Broglie und die Entdeckung der Materiewellen. Archive for History of Exact Sciences 7: 26–68

    Article  MathSciNet  Google Scholar 

  • Kummer E.E. (1836) Ueber die hypergeometrische Reihe F(α,β,γ). Journal für reine Und angewandte Mathematik 15(39–83): 127–172

    Article  MATH  Google Scholar 

  • Lagrange, J.L. 1762. Solution de différents problèmes de calcul intégral. Miscellanea Taurinensia 3 (1762–1765). Oeuvres, vol. 1, 471–668. Paris: Gauthier-Villars.

    Google Scholar 

  • Laguerre, E.N. (1879a). Sur l’intégrale \({\int_{x}^\infty\frac{e^{-x}\,dx}{x}}\) . Bull. Soc. Math. France 7: 428–437. Oeuvres, vol. I, 428–437.

    Google Scholar 

  • Laguerre, E.N. 1879b. Sur la réduction en fractions continues d’une fonction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels. Bull. Soc. Math. France 8: 21–27. Oeuvres, vol. I, 438–444.

  • Laguerre, E.N. 1884. Sur la réduction en fractions continues d’une fraction qui satisfait à une équation linéaire du premier ordre à coefficients rationnels. Comptes Rendus de l’Academie des Sciences Paris 98: 209–212. Oeuvres, vol. I, 445–448.

    Google Scholar 

  • Laguerre, E.N. 1885. Sur la réduction des fractions continues d’une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels. J. Math. Pures Appl. 1 (4): 135–165. Oeuvres, vol. II, 685–711.

    Google Scholar 

  • Landau L., Lifchitz E. (1972) Théorie quantique relativiste. Première partie. Mir, Moscou

    Google Scholar 

  • Laurent, H. 1885–1991. Traité d’analyse, 7 vol. Paris: Gauthier-Villars.

  • Lavrentiev M., Shabat B. (1977) Méthodes de la théorie des fonctions d’une variable complexe. Mir, Moscou

    Google Scholar 

  • Lebedev N.N. (1965). Special functions and their applications. Prentice-Hall. Reprint New York: Dover, 1972.

  • Mehra J., Rechenberg H. (1987) The historical development of quantum theory. Vol. 5: Erwin Schrödinger and the rise of wave mechanics, 2 vol. Springer, New York

    Google Scholar 

  • Milne A. (1915) On the roots of the confluent hypergeometric equation. Proceedings of the Edinburgh Mathematical Society 33: 48–64

    Article  Google Scholar 

  • Moore W. (1989) Schrödinger: life and thought. Cambridge University Press, Cambridge

    Google Scholar 

  • Murphy, R. 1833–1835. On the inverse method of definite integrals, with physical applications. Transactions of the Cambridge Philosophical Society 4: 355–408; 5: 13–148, 315–393.

  • Nikiforov A., Ouvarov V. (1976) Éléments de la théorie des fonctions spéciales. Mir, Moscou

    MATH  Google Scholar 

  • Nikiforov A., Uvarov V. (1988) Special functions of mathematical physics. Birkhäuser, Basel

    MATH  Google Scholar 

  • Pauli W. (1927) Zur Quantenmechanik des magnetischen Elektrons. Z. f. Physik 43: 601–623

    Article  Google Scholar 

  • Perron, O. 1929. Die Lehre von den Kettenbrücken, 2nd ed. Leipzig: Teubner. Reprint New York: Chelsea.

  • Picard, É. 1891–1897. Traité d’analyse, 3 vol. Paris: Gauthier-Villars.

  • Pidduck F.D. (1910) On the propagation of a disturbance in a fluid under gravity. Proceedings of the Royal Society of London A 83: 347–356

    Article  Google Scholar 

  • Pidduck F.D. (1929) Laguerre polynomials in quantum mechanics. Journal of the London Mathematical Society 4(1): 163–166

    Article  Google Scholar 

  • Pollaczek, F. 1956. Sur une généralisation des polynômes de Jacobi. Mémorial des sciences mathématiques No. 131. Paris: Gauthier-Villars.

  • Rainville E.O. (1960) Special functions. McMillan, New York

    MATH  Google Scholar 

  • Rechenberg H. (1988) Erwin Schrödinger and the creation of wave mechanics. Acta Physica Polonica B19: 683–695

    Google Scholar 

  • Ronveaux A., Mawhin J. (2005) Rediscovering the contributions of Rodrigues on the representation of special functions. Expositiones Mathematicae 23: 361–369

    Article  MATH  MathSciNet  Google Scholar 

  • Rose M.E. (1961) Relativistic electron theory. Wiley, New York

    MATH  Google Scholar 

  • Rouché É. (1886) Edmond Laguerre, sa vie et ses travaux. Journal de l’École Polytechnique 56: 213–271

    Google Scholar 

  • Schiff L.I. (1968) Quantum mechanics, 3rd ed. McGraw-Hill, New York

    Google Scholar 

  • Schlesinger, L. 1900. Einführung in die Theorie der Differentialgleichungen mit einer unabhängigen Variabeln. Sammlung Schuber No. XIII, G.J. Göschensche Verlag.

  • Schrödinger E. (1926a) Quantisierung als Eigenwertproblem. (Erste Mitteilung). Annalen der Physik 79(4): 361–376

    Article  Google Scholar 

  • Schrödinger E. (1926b) Quantisierung als Eigenwertproblem. (Zweite Mitteilung). Annalen der Physik 79(4): 489–527

    Article  Google Scholar 

  • Schrödinger E. (1926c) Quantisierung als Eigenwertproblem. (Dritte Mitteilung: Störungstheorie, mit Anwendung auf den Starkeeffekt der Balmerlinien). Annalen der Physik 80(4): 437–490

    Article  Google Scholar 

  • Schrödinger, E. 1927. Abhandlungen zur Wellenmechanik. Leipzig: Barth. English translation Collected papers on wave mechanics. London: Blackie & Son, 1928. French translation Mémoires sur la mécanique ondulatoire. Paris: Félix Alcan, 1933.

  • Slater L.J. (1960) Confluent hypergeometric functions. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Smirnov V. (1969–1984) Cours de mathématiques supérieures, 4 vol. Mir, Moscou

    Google Scholar 

  • Sokhotskii, Yu.W. 1873. On definite integrals and functions used in series expansions (Russian). PhD thesis, St. Petersburg.

  • Sommerfeld A., Runge J. (1911) Anwendung der Vektorrechnung auf die Grundlagen der geometrischen Optik. Ann. f. Phys. 35(4): 277–298

    Article  Google Scholar 

  • Sonine N. (1880) Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 16: 1–80

    Article  MathSciNet  Google Scholar 

  • Steffens K.G. (2006) The history of approximation theory. From Euler to Bernstein. Birkhäuser, Basel

    Google Scholar 

  • Sylow, L., Lie, S. (eds) (1881) Oeuvres complètes de Niels Hendrik Abel, 2 vol. Christiana, Grondhal & Son

    Google Scholar 

  • Szegö G. (1959) Orthogonal polynomials, 2nd ed. Providence, American Mathematical Society

    MATH  Google Scholar 

  • Szegö G. 1968. An outline of the history of orthogonal polynomials. In Proceedings of the conference on orthogonal expansions and their continuous analogues, 3–11. Carbondale: Southern Illinois University Press. Collected Papers. Vol. 3, 1982: 857–865.

  • Turán, P. 1970. Bemerkungen. In Leopold Fejér Gesammelte Arbeiten, vol. I, ed. P. Turán, 502–503. Basel: Birkhäuser.

  • Valiron, G. 1942–1945. Cours d’analyse mathématique, 2 vol. Paris: Masson.

  • Weber, H. 1900–1901. Die partiellen Differential-Gleichungen der Mathematischen Physik, 2 vol. Braunschweig: Vieweg.

  • Wessels L. (1979) Schrödinger’s route to wave mechanics. Studies in History and Philosophy of Science 10: 311–340

    Article  MathSciNet  Google Scholar 

  • Weyl, H. 1928. Gruppentheorie und Quantenmechanik. Leipzig: Hirzel. English transl. London: Methuen, 1931. Reprint New York: Dover.

  • Whittaker E., Watson N. (1902) Modern analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Mawhin.

Additional information

Communicated by Jeremy Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mawhin, J., Ronveaux, A. Schrödinger and Dirac equations for the hydrogen atom, and Laguerre polynomials. Arch. Hist. Exact Sci. 64, 429–460 (2010). https://doi.org/10.1007/s00407-010-0060-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-010-0060-3

Keywords

Navigation