Skip to main content
Log in

The Structure Group of a Generalized Orthomodular Lattice

  • Published:
Studia Logica Aims and scope Submit manuscript

Le plus court chemin entre deux vérités dans le domaine réel passe par le domaine complexe.

Jacques Hadamard

Abstract

Orthomodular lattices with a two-valued Jauch–Piron state split into a generalized orthomodular lattice (GOML) and its dual. GOMLs are characterized as a class of L-algebras, a quantum structure which arises in the theory of Garside groups, algebraic logic, and in connections with solutions of the quantum Yang–Baxter equation. It is proved that every GOML X embeds into a group G(X) with a lattice structure such that the right multiplications in G(X) are lattice automorphisms. Up to isomorphism, X is uniquely determined by G(X), and the embedding \(X\hookrightarrow G(X)\) is a universal group-valued measure on X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E., Theory of braids, Annals of Mathematics 48:101–126, 1947.

    Article  Google Scholar 

  2. Bigard, A., K. Keimel, and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, vol. 608, Springer, Berlin-New York, 1977.

  3. Birkhoff, G., and J. von Neumann, The logic of quantum mechanics, Annals of Mathematics 37(4):823–843, 1936.

    Article  Google Scholar 

  4. Bosbach, B., Rechtskomplementäre Halbgruppen, Mathematische Zeitschrift 124:273–288, 1972.

    Article  Google Scholar 

  5. Boyer, S., D. Rolfsen, and B. Wiest, Orderable 3-manifold groups, Annales de l’institut Fourier 55(1):243–288, 2005.

    Article  Google Scholar 

  6. Brieskorn, E., and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Inventiones mathematicae 17:245–271, 1972.

    Article  Google Scholar 

  7. Chouraqui, F., Garside groups and Yang–Baxter equation, Communications in Algebra 38(12):4441–4460, 2010.

    Article  Google Scholar 

  8. Chouraqui, F., and E. Godelle, Finite quotients of groups of I-type, Advances in Mathematics 258:46–68, 2014.

    Article  Google Scholar 

  9. Conrad, P., Right-ordered groups, The Michigan Mathematical Journal 6:267–275, 1959.

    Article  Google Scholar 

  10. Darnel, M. R., Theory of lattice-ordered groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 187, Marcel Dekker, Inc., New York, 1995.

  11. Dehornoy, P., Groupes de Garside, Annales scientifiques de l’Ecole normale supérieure 35(2):267–306, 2002.

    Article  Google Scholar 

  12. Dehornoy, P., F. Digne, E. Godelle, D. Krammer, and J. Michel, Foundations of Garside Theory, EMS Tracts in Math. 22, European Mathematical Society, 2015.

  13. Dehornoy, P., and L. Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proceedings of the London Mathematical Society 79(3):569–604, 1999.

    Article  Google Scholar 

  14. Deligne, P., Les immeubles des groupes de tresses généralisés, Inventiones mathematicae 17:273–302, 1972.

    Article  Google Scholar 

  15. Etingof, P., T. Schedler, and A. Soloviev, Set-theoretical solutions to the quantum Yang–Baxter equation, Duke Mathematical Journal 100:169–209, 1999.

    Article  Google Scholar 

  16. Foulis, D. J., Conditions for the modularity of an orthomodular lattice, Pacific Journal of Mathematics 11:889–895, 1961.

    Article  Google Scholar 

  17. Herman, L., E. L. Marsden, and R. Piziak, Implication connectives in orthomodular lattices, Notre Dame Journal of Formal Logic 16:305–328, 1975.

    Article  Google Scholar 

  18. Janowitz, M. F., A note on generalized orthomodular lattices, Journal of Natural Sciences and Mathematics 8:89–94, 1968.

    Google Scholar 

  19. Jauch, J. M., Foundations of Quantum Mechanics, Addison-Wesley Publishing Co., Reading, MA, London-Don Mills, Ont., 1968.

  20. Loomis, L. H., The lattice theoretic background of the dimension theory of operator algebras, Memoirs of the American Mathematical Society 18:36, 1955.

    Google Scholar 

  21. Luxemburg, W. A. J., and A. C. Zaanen, Riesz spaces, Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam, London, American Elsevier Publishing Co., New York, 1971.

  22. Luxemburg, W. A. J., and A. C. Zaanen: Riesz Spaces, II, North-Holland Mathematical Library, vol. 30, North-Holland Publishing Co., Amsterdam, 1983.

    Google Scholar 

  23. Navara, M., An orthomodular lattice admitting no group-valued measure, Proceedings of the American Mathematical Society 122(1):7–12, 1994.

    Article  Google Scholar 

  24. Navas, A., On the dynamics of (left) orderable groups, Annales de l’Institut Fourier 60(5):1685–1740, 2010.

    Article  Google Scholar 

  25. Navas, A., and B. Wiest, Nielsen–Thurston orders and the space of braid orderings, Bulletin of the London Mathematical Society 43(5):901–911, 2011.

    Article  Google Scholar 

  26. Picantin, M., The center of thin Gaussian groups, Journal of Algebra 245(1):92–122, 2001.

    Article  Google Scholar 

  27. Piron, C., Axiomatique quantique, Helvetica Physica Acta 37:439–468, 1964.

    Google Scholar 

  28. Rüttimann, G. T., Jauch–Piron states, Journal of Mathematical Physics 18(2):189–193, 1977.

    Article  Google Scholar 

  29. Rump, W., A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation, Advances in Mathematics 193:40–55, 2005.

    Article  Google Scholar 

  30. Rump, W., \(L\)-Groups, Journal of Algebra 320(6):2328–2348, 2008.

    Article  Google Scholar 

  31. Rump, W., Semidirect products in algebraic logic and solutions of the quantum Yang–Baxter equation, Journal of Algebra and Its Applications 7(4):471–490, 2008.

    Article  Google Scholar 

  32. Rump, W., Right \(l\)-groups, geometric garside groups, and solutions of the quantum Yang–Baxter equation, Journal of Algebra 439:470–510, 2015.

    Article  Google Scholar 

  33. Rump, W., Decomposition of Garside groups and self-similar \(L\)-algebras (submitted).

  34. Rump, W., Von Neumann algebras, \(L\)-monoids, and Garside groups (submitted).

  35. Sasaki, U., Orthocomplemented lattices satisfying the exchange axiom, Journal of Science of the Hiroshima University. Series A 17:293–293, 1954.

    Google Scholar 

  36. Short, H., and B. Wiest, Orderings of mapping class groups after Thurston, L’Enseignement Mathématique 46(3--4):279–312, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Rump.

Additional information

Dedicated to B. V. M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rump, W. The Structure Group of a Generalized Orthomodular Lattice. Stud Logica 106, 85–100 (2018). https://doi.org/10.1007/s11225-017-9726-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-017-9726-z

Keywords

Mathematics Subject Classification

Navigation