Skip to main content
Log in

Implications of Space-Time Foam for Entanglement Correlations of Neutral Kaons

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The role of CPT invariance and consequences for bipartite entanglement of neutral (K) mesons are discussed. A relaxation of CPT leads to a modification of the entanglement which is known as the ω effect. The relaxation of assumptions required to prove the CPT theorem are examined within the context of models of space-time foam. It is shown that the evasion of the EPR type entanglement implied by CPT (which is connected with spin statistics) is rather elusive. Relaxation of locality (through non-commutative geometry) or the introduction of an environment do not by themselves lead to a destruction of the entanglement. One model of the environment, which is based on non-critical strings and D-particle capture and recoil, leads to a specific momentum dependent stochastic contribution to the space-time metric and consequent change in the neutral meson bipartite entanglement. Although the class of models producing the omega effect is non-empty, the lack of an omega effect is demonstrated for a wide class of models based on thermal like baths which are often considered as generic models appropriate for the study of space-time foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, T.D.: Particle Physics and Introduction to Field Theory. Harwood Academic, New York (1981)

    Google Scholar 

  2. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Benjamin, New York (1964)

    MATH  Google Scholar 

  3. Greenberg, O.W.: Why is CPT fundamental? Found. Phys. 36, 1535 (2006). arXiv:hep-ph/0309309

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Bernabeu, J., Mavromatos, N.E., Papavassiliou, J.: Novel type of CPT violation for correlated EPR states. Phys. Rev. Lett. 92, 131601 (2004). arXiv:hep-ph/0310180

    Article  ADS  Google Scholar 

  5. Lipkin, H.J.: CP violation and coherent decays of kaon pairs. Phys. Rev. 176, 1715 (1968)

    Article  ADS  Google Scholar 

  6. Bernabeu, J., Mavromatos, N.E., Sarkar, S.: Decoherence induced CPT violation and entangled neutral mesons. Phys. Rev. D 74, 045014 (2006). arXiv:hep-th/0606137

    Article  ADS  Google Scholar 

  7. Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  8. Hawking, S.W.: The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Page, D.N.: Is black-hole evaporation predictable? Phys. Rev. Lett. 44, 301 (1980)

    Article  ADS  Google Scholar 

  10. ’t Hooft, G.: Holography and quantum gravity. Prepared for Advanced School on Supersymmetry in the Theories of Fields, Strings and Branes, Santiago de Compostela, Spain, 26–31 July 1999

  11. Susskind, L.: The world as a hologram. J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Braunstein, S.L., Pati, A.K.: Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox. Phys. Rev. Lett. 98, 080502 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Smolin, J.A., Oppenheim, J.: Locking information in black holes. Phys. Rev. Lett. 96, 081302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  14. Ellis, J.R., Mavromatos, N.E., Westmuckett, M.: A supersymmetric D-brane model of space-time foam. Phys. Rev. D 70, 044036 (2004). arXiv:gr-qc/0405066

    Article  MathSciNet  ADS  Google Scholar 

  15. Ellis, J.R., Mavromatos, N.E., Westmuckett, M.: Potentials between D-branes in a supersymmetric model of space-time foam. Phys. Rev. D 71, 106006 (2005). arXiv:gr-qc/0501060

    Article  MathSciNet  ADS  Google Scholar 

  16. Sarkar, S.: Methods and models for the study of decoherence. In: Di Domenico, A. (ed.) Handbook on Neutral Kaon Interferometry at a Φ-factory, vol. 39 (2008). arXiv:hep-ph/0610010

  17. Benatti, F., Floreanini, R.: Nonstandard neutral kaons dynamics from D-brane statistics. Ann. Phys. 273, 58 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Akofor, E., Balachandran, A.P., Jo, S.G., Joseph, A.: Quantum fields on the quantum Groenewold-Moyal plane: C, P, T and CPT. J. High Energy Phys. 8, 045 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. Wald, R.M.: Quantum gravity and time reversibility. Phys. Rev. D 21, 2742 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  20. Bekenstein, J.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  21. Bekenstein, J.: Generalized second law of thermodynamics in black-hole physics. Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  22. Hawking, S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  23. Giddings, S.B.: Black hole information, unitarity and nonlocality. Phys. Rev. D 74, 106005 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  24. Shore, G.M., A local renormalization group equation, diffeomorphisms and conformal invariance in sigma-models. Nucl. Phys. B 286, 349 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  25. Zamolodchikov, A.B.: Irreversibility of the flux of the renormalization group in a 2-D field theory. JETP Lett. 43, 730 (1986). [Pisma Z. Eksp. Teor. Fiz. 43, 565 (1986)]

    MathSciNet  ADS  Google Scholar 

  26. Gutperle, M., Headrick, M., Minwalla, S., Schomerus, M.: Spacetime energy decreases under world-sheet renormalization group flow. J. High Energy Phys. 1, 073 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  27. Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: A non-critical string approach to black holes, time and quantum dynamics. In: Zichichi, A. (ed.) From Supersymmetry to the Origin of Space-Time. World Scientific, Singapore (1995). arXiv:hep-th/9403133

    Google Scholar 

  28. Mavromatos, N.E.: Decoherence and CPT violation in a stringy model of space-time foam. arXiv:0906.2712 [hep-th]

  29. Mavromatos, N.E.: CPT violation and decoherence in quantum gravity. In: Lect. Notes Phys., vol. 669, pp. 245–320. Springer, Berlin (2005)

    Google Scholar 

  30. Mavromatos, N.E.: Neutrinos and the phenomenology of CPT violation. In: Venice 2003, Neutrino oscillations, pp. 405–433 (2004). arXiv:hep-ph/0402005

  31. Riess, A.G., et al. (Supernova Search Team Collaboration): Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  32. Perlmutter, S., et al. (Supernova Cosmology Project Collaboration): Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  33. Spergel, D.N., et al. (WMAP Collaboration): First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003). arXiv:astro-ph/0302209

    Article  ADS  Google Scholar 

  34. Spergel, D.N., et al.: Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology. arXiv:astro-ph/0603449

  35. Upadhye, A., Ishak, M., Steinhardt, P.J.: Dynamical dark energy: current constraints and forecasts. arXiv:astro-ph/0411803

  36. Gravanis, E., Mavromatos, N.E.: Vacuum energy and cosmological supersymmetry breaking in brane worlds. Phys. Lett. B 547, 117 (2002). arXiv:hep-th/0205298

    Article  MATH  ADS  Google Scholar 

  37. Gurarie, V.: Logarithmic operators in conformal field theory. Nucl. Phys. B 410, 535 (1993). arXiv:hep-th/9303160

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. Flohr, M.: Bits and pieces in logarithmic conformal field theory. Int. J. Mod. Phys. A 18, 4497 (2003). arXiv:hep-th/0111228

    Article  MathSciNet  ADS  Google Scholar 

  39. Gaberdiel, M.R.: An algebraic approach to logarithmic conformal field theory. Int. J. Mod. Phys. A 18, 4593 (2003). arXiv:hep-th/0111260

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Kogan, I.I., Mavromatos, N.E.: World-sheet logarithmic operators and target space symmetries in string theory. Phys. Lett. B 375, 111 (1996). arXiv:hep-th/9512210

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Caux, J.S., Kogan, I.I., Tsvelik, A.M.: Logarithmic operators and hidden continuous symmetry in critical disordered models. Nucl. Phys. B 466, 444 (1996). arXiv:hep-th/9511134

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Rahimi Tabar, M.R., Aghamohammadi, A., Khorrami, M.: The logarithmic conformal field theories. Nucl. Phys. B 497, 555 (1997). arXiv:hep-th/9610168

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Sfetsos, K.: String backgrounds and LCFT. Phys. Lett. B 543, 73 (2002). arXiv:hep-th/0206091

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Fjelstad, J., Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Y.: Logarithmic conformal field theories via logarithmic deformations. Nucl. Phys. B 633, 379 (2002). arXiv:hep-th/0201091

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Mavromatos, N.E., Szabo, R.J.: The Neveu-Schwarz and Ramond algebras of logarithmic superconformal field theory. J. High Energy Phys. 0301, 041 (2003). arXiv:hep-th/0207273

    Article  MathSciNet  ADS  Google Scholar 

  46. Kogan, I.I., Mavromatos, N.E., Wheater, J.F.: D-brane recoil and logarithmic operators. Phys. Lett. B 387, 483 (1996). arXiv:hep-th/9606102

    Article  MathSciNet  ADS  Google Scholar 

  47. Mavromatos, N.E.: Logarithmic conformal field theories and strings in changing backgrounds. In: Shifman, M., et al. (eds.) From Fields to Strings. I. Kogan Memorial, vol. 2, pp. 1257–1364. World Sci., Singapore (2005). arXiv:hep-th/0407026

    Google Scholar 

  48. Polchinski, J.: Dirichlet branes and Ramond-Ramond charges. Phys. Rev. Lett. 75, 4724 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Fischler, W., Paban, S., Rozali, M.: Collective coordinates for D-branes. Phys. Lett. B 381, 62 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: A microscopic recoil model for light-cone fluctuations in quantum gravity. Phys. Rev. D 61, 027503 (2000). arXiv:gr-qc/9906029

    Article  MathSciNet  ADS  Google Scholar 

  51. Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: Dynamical formation of horizons in recoiling D-branes. Phys. Rev. D 62, 084019 (2000). arXiv:gr-qc/0006004

    Article  MathSciNet  ADS  Google Scholar 

  52. Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V.: Derivation of a vacuum refractive index in a stringy space-time foam model. Phys. Lett. B 665, 412 (2008). arXiv:0804.3566 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  53. Ellis, J.R., Mavromatos, N.E., Westmuckett, M.: A supersymmetric D-brane model of space-time foam. Phys. Rev. D 70, 044036 (2004). arXiv:gr-qc/0405066

    Article  MathSciNet  ADS  Google Scholar 

  54. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 1. Cambridge Univ. Press, Cambridge (1987)

    MATH  Google Scholar 

  55. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 2. Cambridge Univ. Press, Cambridge (1987)

    MATH  Google Scholar 

  56. Polchinski, J.: String Theory, vol. 1. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  57. Polchinski, J.: String Theory, vol. 2. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  58. Johnson, C.V.: D Branes. Cambridge Univ. Press, Cambridge (2003)

    MATH  Google Scholar 

  59. Mavromatos, N.E., Szabo, R.J.: Matrix D-brane dynamics, logarithmic operators and quantization of noncommutative space-time. Phys. Rev. D 59, 104018 (1999). arXiv:hep-th/9808124

    Article  MathSciNet  ADS  Google Scholar 

  60. Kogan, I.I., Mavromatos, N.E., Wheater, J.F.: D-brane recoil and logarithmic operators. Phys. Lett. B 387, 483 (1996). arXiv:hep-th/9606102

    Article  MathSciNet  ADS  Google Scholar 

  61. Kogan, I.I., Mavromatos, N.E.: World-sheet logarithmic operators and target space symmetries in string theory. Phys. Lett. B 375, 111 (1996). arXiv:hep-th/9512210

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Mavromatos, N.E., Sarkar, S.: Liouville decoherence in a model of flavour oscillations in the presence of dark energy. Phys. Rev. D 72, 065016 (2005). arXiv:hep-th/0506242

    Article  ADS  Google Scholar 

  63. Mavromatos, N.E., Sarkar, S.: Non-extensive statistics in stringy space-time foam models and entangled meson states. Phys. Rev. D 79, 104015 (2009). arXiv:0812.3952 [hep-th]

    Article  ADS  Google Scholar 

  64. Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: Derivation of a vacuum refractive index in a stringy space-time foam model. Phys. Lett. B 665, 412 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  65. Yoneya, T.: On the interpretation of minimal length in string theories. Mod. Phys. Lett. A 4, 1587 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  66. Mavromatos, N.E., Sarkar, S.: Methods of approaching decoherence in the flavour sector due to space-time foam. Phys. Rev. D 74, 036007 (2006). arXiv:hep-ph/0606048

    Article  ADS  Google Scholar 

  67. Barenboim, G., Mavromatos, N.E.: Decoherent neutrino mixing, dark energy and matter-antimatter asymmetry. Phys. Rev. D 70, 093015 (2004). arXiv:hep-ph/0406035

    Article  ADS  Google Scholar 

  68. Mavromatos, N.E., Szabo, R.J.: The Neveu-Schwarz and Ramond algebras of logarithmic superconformal field theory. JHEP 0301, 041 (2003). arXiv:hep-th/0207273

    Article  MathSciNet  ADS  Google Scholar 

  69. Mavromatos, N.E., Szabo, R.J.: D-brane dynamics and logarithmic superconformal algebras. JHEP 0110, 027 (2001). arXiv:hep-th/0106259

    Article  MathSciNet  ADS  Google Scholar 

  70. Bernabeu, J., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Papavassiliou, J.: CPT and quantum mechanics tests with kaons. In: Di Domenico, A. (ed.) Handbook on Neutral Kaon Interferometry at a Φ-Factory, vol. 39 (2008). arXiv:hep-ph/0607322

  71. Ambrosino, F., et al. (KLOE Collaboration): First observation of quantum interference in the process Φ→K S K L π + π π + π : a test of quantum mechanics and CPT symmetry. Phys. Lett. B 642, 315 (2006). arXiv:hep-ex/0607027

    Article  ADS  Google Scholar 

  72. Bossi, F., De Lucia, E., Lee-Franzini, J., Miscetti, S., Palutan, M. (KLOE Collaboration): Precision kaon and hadron physics with KLOE. Riv. Nuovo Cim. 031, 531 (2008). arXiv:0811.1929 [hep-ex]

    ADS  Google Scholar 

  73. Di Domenico, A.: Neutral kaon interferometry at Phi-factory. In: Di Domenico, A. (ed.) Handbook of Neutral Kaon Interferometry at a Phi-factory, pp. 1–38, and references therein

  74. Gardiner, C.W.: Quantum Noise. Springer, Berlin (1991)

    MATH  Google Scholar 

  75. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  76. Garay, L.J.: Quantum evolution in spacetime foam. Int. J. Mod. Phys. A 14, 4079 (1999). arXiv:gr-qc/9911002

    Article  MATH  MathSciNet  ADS  Google Scholar 

  77. Garay, L.J.: Thermal properties of spacetime foam. Phys. Rev. D 58, 124015 (1998). arXiv:gr-qc/9806047

    Article  MathSciNet  ADS  Google Scholar 

  78. Garay, L.J.: Spacetime foam as a quantum thermal bath. Phys. Rev. Lett. 80, 2508 (1998). arXiv:gr-qc/9801024

    Article  MATH  MathSciNet  ADS  Google Scholar 

  79. Padmanabhan, T.: Event horizon of a Schwarzschild black hole: magnifying glass for Planck length physics. Phys. Rev. D 59, 124012 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  80. Barenboim, G., Mavromatos, N.E., Sarkar, S., Waldron-Lauda, A.: Quantum decoherence and neutrino data. Nucl. Phys. B 758, 90 (2006)

    Article  MATH  ADS  Google Scholar 

  81. Loreti, F.N., Balantekin, A.B.: Neutrino oscillations in noisy media. Phys. Rev. D 50, 4762 (1994). arXiv:nucl-th/9406003

    Article  ADS  Google Scholar 

  82. Torrente-Lujan, E.: Particle oscillations in external chaotic fields. arXiv:hep-ph/0210037

  83. Benatti, F., Floreanini, R.: Dissipative neutrino oscillations in randomly fluctuating matter. Phys. Rev. D 71, 013003 (2005). arXiv:hep-ph/0412311

    Article  ADS  Google Scholar 

  84. Kim, M.S., Lee, J., Ahn, D., Knight, P.L.: Entanglement induced by a single-mode heat environment. Phys. Rev. A 65, 040101 (2002)

    Article  ADS  Google Scholar 

  85. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semi-classical radiation theories with application to beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  86. Shore, B.W., Knight, P.L.: The Jaynes-Cummings model. J. Mod. Opt. 40, 1195 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  87. Sarkar, S.: The omega effect as a discriminant for space-time foam. J. Phys. A 41, 304013 (2008). arXiv:0710.5563 [hep-ph]

    Article  MathSciNet  Google Scholar 

  88. Pike, E.R., Sarkar, S.: The Quantum Theory of Radiation. Oxford Univ. Press, Oxford (1995)

    Google Scholar 

  89. Liu, H., Tseytlin, A.A.: Statistical mechanics of D0-branes and black hole thermodynamics. JHEP 9801, 010 (1998). arXiv:hep-th/9712063

    Article  MathSciNet  ADS  Google Scholar 

  90. Macfarlane, A.J.: On Q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. Phys. A 22, 4581 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarben Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, S. Implications of Space-Time Foam for Entanglement Correlations of Neutral Kaons. Found Phys 40, 978–1003 (2010). https://doi.org/10.1007/s10701-009-9389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9389-3

Navigation