Skip to main content
Log in

Increases in environmental entropy demand evolution

A consequence of the entropic theory of perception

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

An application of the entropic theory of perception to evolutionary systems indicates that environmental entropy increases will exert pressures on an organism to adapt. We speculate that the instability caused by such environmental changes will also cause an increase in the mutation rate of organisms leading to an eventual increase in their complexity. Such complexity generation allows organisms to adapt to the more entropic environment. Although we conclude that increases in environmental entropy cause an organism to evolve into a more complex organism, increases in entropy may not be necessary for complexity generationper se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez de Lorenzana, J.M. and L.M. Ward (1987). On evolutionary systems. Behav. Sci. 32:19–33.

    Google Scholar 

  • Ashby, W.R. (1956). An Introduction to Cybernetics. New York, Chapman and Hall.

    Google Scholar 

  • Balzhiser, R.E., M.R. Samuels and J.D. Eliassen (1972) Chemical Engineering Thermodynamics. Inglewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • Behara, M. (1990). Additive and Nonadditive Measures of Entropy. New Delhi, Wiley Eastern Limited.

    Google Scholar 

  • Bennett, C.H. (1990). How to define complexity in physics, and why. In: W.H. Zurek, ed., Complexity, Entropy and the Physics of Information, 137–148. Redwood City, CA, Addison-Wesley.

    Google Scholar 

  • Bickham, J.W. (1981). Two-hundred-million-year-old-chromosomes: deceleration of the rate of karyotypic evolution in turtles. Science 212:1291–1293.

    Google Scholar 

  • Bordo, D. and P. Argos (1990). Evolution of protein cores: constraints in point mutations as observed in globin tertiary structures. J. Mol. Biol. 211:975–988.

    Google Scholar 

  • Brillouin, L. (1962). Science and Information Theory. New York, Academic Press.

    Google Scholar 

  • Brooks, D.R. and R.T. O'Grady (1986). Nonequilibrium thermodynamics and different axioms of evolution. Acta Biotheor. 35:77–106.

    Google Scholar 

  • Cover, T.M. and J.A. Thomas (1991). Elements of Information Theory. New York, John Wiley.

    Google Scholar 

  • Eldredge, N. and S.J. Gould (1972). Punctuated equilibria: an alternative to phyletic gradualism. In: T.J.M. Schopf, ed., Models in Paleobiology, 82–115. San Francisco, CA, Freeman Cooper.

    Google Scholar 

  • Gillespie, J.H. (1986). Natural selection and the molecular clock. Mol. Biol. Evol. 3:138–155.

    Google Scholar 

  • Hayatsu, H., S. Arimoto and T. Negishi (1988). Dietary inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 202:429–446.

    Google Scholar 

  • Howes, A.J., I.R. Rowland, B.G. Lake and A.J. Alldrick (1989). Effect of dietary fibre on the mutagenicity and distribution of 2-amino-3,4-dimethylimidazo [4,5-f] quinoline (MeIQ). Mutat. Res. 210:227–235.

    Google Scholar 

  • Hull, D.L. (1988). Introduction. In: B.H. Weber, D.J. Depew & J.D. Smith, eds., Entropy, Information, and Evolution, 1–8. Cambridge, MA, MIT.

    Google Scholar 

  • Ishii, K., H. Matsuda and N. Ogita (1982). A mathematical model of biological evolution. J. Math. Biol. 14:327–353.

    Google Scholar 

  • Jukes, T.H. and R. Holmquist (1972). Evolutionary clock: nonconstancy of rate in different species. Science 177:530–532.

    Google Scholar 

  • Kozubek, S., E.A. Krasavin, K.G. Amirtayev, B. Tokarova, I. Soska, V. Drasil, and M. Bonev (1989). The induction of revertants by heavy particles and gamma rays in salmonella tester strains. Mutat. Res. 210:221–226.

    Google Scholar 

  • Norwich, K.H. (1977). On the information received by sensory receptors. Bull. Math. Biol. 39:453–461.

    Google Scholar 

  • Norwich, K.H. (1978). An hypothesis on information, memory and perception. Med. Hypoth. 4:156–164.

    Google Scholar 

  • Norwich, K.H. (1981). Uncertainty in physiology and physics. Bull. Math. Biol. 43:141–149.

    Google Scholar 

  • Norwich, K.H. (1983). To perceive is to doubt: the relativity of perception. J. Theor. Biol. 102:175–190.

    Google Scholar 

  • Norwich, K.H. (1987). On the theory of Weber fractions. Percept. Psychophys. 42:286–298.

    Google Scholar 

  • Norwich, K.H. (1991). On the fundamental nature of perception. Acta Biotheor 39:81–90.

    Google Scholar 

  • Nothel, H. (1987). Adaptation of Drosophila melanogaster populations to high mutation pressure: Evolutionary adjustment of mutation rates. Proc. Natl. Acad. Sci. USA. 84:1045–1049.

    Google Scholar 

  • Shannon, C.E. and W. Weaver (1949). The mathematical theory of communication. Urbana, University of Illinois Press.

    Google Scholar 

  • Shetty, T.K., A.R. Francis, and R.K. Bhattacharya (1988). Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of sulphur-containing amino acids. Mut. Res. 222:403–407.

    Google Scholar 

  • Thompson, E.D., J.A. Mcdermott, T.B. Zerkle, J.A. Skare, B.L. Evans and D.B. Cody (1989). Genotoxicity of zinc in 4 short-term mutagenicity assays. Mutat. Res. 223:267–272.

    Google Scholar 

  • Tribus, M. (1961) Thermostatics and Thermodynamics. New York, Van Nostrand.

    Google Scholar 

  • Wicken, J.S. (1979). The generation of complexity in evolution: a thermodynamic and information-theoretical discussion. J. Theor Biol. 77:349–365.

    Google Scholar 

  • Wicken, J.S. (1988). Thermodynamics, evolution, and emergence: ingredients for a new synthesis. In: B.H. Weber, D.J. Depew & J.D. Smith, eds., Entropy, Information, and Evolution, 139–169. Cambridge, MA, MIT.

    Google Scholar 

  • Zimmerman, I.D. and P.E. Rapp (1989). Saltatory transitions are a naturally occurring property of evolving systems. Biol. Cybern. 62:167–175.

    Google Scholar 

  • Zurek, W.H. (1990a). Algorithmic information content, Church-Turing thesis, physical entropy, and Maxwell's demon. In: W.H. Zurek, ed., Complexity, Entropy and the Physics of Information, 73–89. Redwood City, CA, Addison-Wesley.

    Google Scholar 

  • Zurek, W.H. (1990b). Foreword. In: W.H. Zurek, ed., Complexity, Entropy and the Physics of Information, vii-x. Redwood City, CA, Addison-Wesley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulze, G., Mori, S. Increases in environmental entropy demand evolution. Acta Biotheor 41, 149–164 (1993). https://doi.org/10.1007/BF00712163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00712163

Key words

Navigation