Skip to main content
Log in

Reduction and Extremality of Finite Observables

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We investigate the theory of finite observables, i.e., resolutions of the finite-dimensional identity by means of positive operators, that have a physical interpretation in terms of measurement schemes. We focus on extremal and rank-one observables and consider various constructions that reduce observables to simpler ones. However, these constructions do not suffice to generate all finite extremal observables, as we show by means of counter-examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ludwig, G.: Versuch einer axiomatischen Grundlegung der Quantenmechanik und allgemeinerer physikalischer Theorien. Z. Phys. 181, 233–260 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture Notes in Physics, vol. 190. Springer-Verlag, Berlin (1983)

    Book  MATH  Google Scholar 

  3. Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum Measurement. Springer-Verlag, Berlin (2016)

    Book  MATH  Google Scholar 

  4. Talkner, P., Lutz, E., Hänggi, P.: Fluctuation theorems: work is not an observable. Phys. Rev. E 75, 050102 (2007)

    Article  ADS  Google Scholar 

  5. Roncaglia, A.J., Cerisola, F., Paz, J.P.: Work measurement as a generalized quantum measurement. Phys. Rev. Lett. 113, 250601 (2014)

    Article  ADS  Google Scholar 

  6. Holevo, A.S.: Estimation of shift parameters of a quantum state. Rep. Math. Phys. 13(3), 379–399 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Werner, R.F.: Screen observables in relativistic and nonrelativistic quantum mechanics. J. Math. Phys. 27(3), 793–803 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kiukas, J., Ruschhaupt, A., Werner, R.F.: Tunneling times with covariant measurements. Found. Phys. 39(7), 829–846 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Helstrom, C.W.: “Simultaneous measurement” from the standpoint of quantum estimation theory. Found. Phys. 4(4), 453–463 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  10. Holevo, A.S.: Covariant measurements and uncertainty relations. Rep. Math. Phys. 16(3), 385–400 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Series in Statistics and Probability, vol. 1. North-Holland Publishing Co, Amsterdam (1982)

    MATH  Google Scholar 

  12. Werner, R.F.: Quantum harmonic analysis on phase space. J. Math. Phys 25(5), 1404–1411 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kraus, K.: Position Observable for the Photon. In: Price, W.C., Chissick, S.S. (eds.) Uncertainty Principles and the Foundation of Quantum Mechanics. Wiley, New York (1977)

    Google Scholar 

  14. Guarnieri, G., Motta, M., Lanz, L.: Single-photon observables and preparation uncertainty relations. J. Phys. A 48(26), 5302 (2015)

    Article  MATH  Google Scholar 

  15. Størmer, E.: Foundations of Quantum Mechanics and Ordered Linear Spaces. In: Hartkämper, A., Neumann, H. (Eds.) Springer-Verlag, Berlin, p. 85 (1974)

  16. Parthasarathy, K.R.: Extremal decision rules in quantum hypothesis testing. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2(4), 557–568 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. D’Ariano, G.M., Presti, P.L., Perinotti, P.: Classical randomness in quantum measurements. J. Phys. A 38, 5979–5991 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Pellonpää, J.-P.: Complete characterization of extreme quantum observables in infinite dimensions. J. Phys. A 44, 085304 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Heinosaari, T., Pellonpää, J.-P.: Generalized coherent states and extremal positive operator valued measures. J. Phys. A 45(24), 244019 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Haapasalo, E., Heinosaari, T., Pellonpää, J.-P.: When do pieces determine the whole? Extremal marginals of a completely positive map. Rev. Math. Phys. 26, 1450002 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haapasalo, E.T.: Extreme observables and optimal measurements in quantum theory, Dissertation, University of Turku (2015)

  22. Haapasalo, E., Pellonpää, J.-P.: Effective methods for constructing extreme quantum observables. arXiv:1809.09935 (2018)

Download references

Acknowledgements

An early version of this paper war co-authored by Paul Busch. Due to his untimely passing away we were not able to finish it as a joint paper. Therefore I have to publish it under my sole responsibility but simultaneously I gratefully acknowledge his essential contributions and, more generally, his continuous support and encouragement for research on fundamental questions of quantum theory. The community has lost a profound scholar and a person of integrity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz-Jürgen Schmidt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, HJ. Reduction and Extremality of Finite Observables. Found Phys 49, 577–593 (2019). https://doi.org/10.1007/s10701-019-00259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00259-x

Keywords

Navigation