Skip to main content
Log in

“Special” states in quantum measurement apparatus: Structural requirements for the recovery of standard probabilities

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In a recently proposed quantum measurement theory the definiteness of quantum measurements is achieved by means of “special” states. The recovery of the usual quantum probabilities is related to the relative abundance of particular classes of “special” states. In the present article we consider two-state discrimination, and model the apparatus modes that could provide the “special” states. We find that there are structural features which, if generally present in apparatus, will provide universal recovery of standard probabilities. These structural features relate to the distribution of certain Hamiltonian matrix elements or interaction times. In particular, those quantities must be asymptotically (x → ∞) distributed according to the Cauchy law, Ca(x)=a/π(x2+a2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Schulman,J. Stat. Phys. 42, 689 (1986);Phys. Lett. A 102, 396 (1984);Phys. Lett. A 130, 194 (1988);Ann. Phys. (N.Y.) 183, 320 (1988);Found. Phys. Lett. 2, 515 (1989); inPath Integrals from meV to MeV, V. Sa-Yakanitet al., eds. (World Scientific, Singapore, 1989), p. 35.

    Google Scholar 

  2. B. Gaveau and L. S. Schulman,J. Stat. Phys. 58, 1209 (1990).

    Google Scholar 

  3. L. S. Schulman, C. R. Doering, and B. Gaveau, “Quantum decay in multi-level systems,”J. Phys. A 24, 2053 (1991).

    Google Scholar 

  4. L. S. Schulman, “Definite quantum measurements,”Ann. Phys. (N.Y.), to appear (1991).

  5. M. Born, “Zur Quantenmechanik der Stossvorgänge,”Z. Phys. 37, 863 (1926); translation printed in J. A. Wheeler and W. H. Zurek,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).

    Google Scholar 

  6. M. F. Shlesinger,Physica D 38, 304 (1989); B. D. Hughes, E. W. Montroll, and M. F. Shlesinger,J. Stat. Phys. 28, 111 (1982); E. W. Montroll and B. J. West, inFluctuation Phenomena, E. W. Montroll and J. L. Lebowitz, eds., 2nd edn. (North-Holland, Amsterdam, 1987).

    Google Scholar 

  7. W. Feller,An Introduction to Probability Theory and Its Applications, Vol. II (Wiley, New York, 1971).

    Google Scholar 

  8. E. P. Wigner,Z. Phys. 131, 101 (1952); H. Araki and M. Yanase,Phys. Rev. 120, 622 (1960); M. Yanase,Phys. Rev. 123, 666 (1961).

    Google Scholar 

  9. T. L. Bell, U. Frisch, and H. Frisch,Phys. Rev. A 17, 1049 (1978).

    Google Scholar 

  10. J. E. Avron, G. Roepstorff, and L. S. Schulman, “Ground state degeneracy and ferromagnetism in a spin glass,”J. Stat. Phys. 26, 25 (1981).

    Google Scholar 

  11. H. Scher, M. F. Shlesinger, and J. T. Bendler, “Time-scale invariance in transport and relaxation,”Phys. Today 44(1), 26 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulman, L.S. “Special” states in quantum measurement apparatus: Structural requirements for the recovery of standard probabilities. Found Phys 21, 931–945 (1991). https://doi.org/10.1007/BF00733216

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733216

Keywords

Navigation