Skip to main content
Log in

The Calculus of Higher-Level Rules, Propositional Quantification, and the Foundational Approach to Proof-Theoretic Harmony

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

We present our calculus of higher-level rules, extended with propositional quantification within rules. This makes it possible to present general schemas for introduction and elimination rules for arbitrary propositional operators and to define what it means that introductions and eliminations are in harmony with each other. This definition does not presuppose any logical system, but is formulated in terms of rules themselves. We therefore speak of a foundational (rather than reductive) account of proof-theoretic harmony. With every set of introduction rules a canonical elimination rule, and with every set of elimination rules a canonical introduction rule is associated in such a way that the canonical rule is in harmony with the set of rules it is associated with. An example given by Hazen and Pelletier is used to demonstrate that there are significant connectives, which are characterized by their elimination rules, and whose introduction rule is the canonical introduction rule associated with these elimination rules. Due to the availabiliy of higher-level rules and propositional quantification, the means of expression of the framework developed are sufficient to ensure that the construction of canonical elimination or introduction rules is always possible and does not lead out of this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belnap N.D.: Tonk, plonk and plink. Analysis 22, 130–134 (1962)

    Article  Google Scholar 

  2. Carnap R.: Die logizistische Grundlegung der Mathematik. Erkenntnis 2, 91–105 (1931)

    Article  Google Scholar 

  3. Došen K.: An intuitionistic Sheffer function. Notre Dame Journal of Formal Logic 26, 479–482 (1985)

    Article  Google Scholar 

  4. Došen K., Schroeder-Heister P.: Uniqueness, definability and interpolation. Jounal of Symbolic Logic 53, 554–570 (1988)

    Article  Google Scholar 

  5. Dummett M.: Frege: Philosophy of Language. Duckworth, London (1973)

    Google Scholar 

  6. Dummett, M. (1991) The Logical Basis of Metaphysics, Duckworth, London.

  7. Dyckhoff, R. (1988) Implementing a simple proof assistant, in Workshop on Programming for Logic Teaching (Leeds, 6-8 July 1987): Proceedings 23/1988, Centre for Theoretical Computer Science (http://rd.host.cs.st-andrews.ac.uk/publications/LeedsPaper.pdf), University of Leeds, pp. 49–59.

  8. Dyckhoff, R. (2009) Generalised elimination rules and harmony. Manuscript, University of St. Andrews, http://rd.host.cs.st-andrews.ac.uk/talks/2009/GE.pdf.

  9. Dyckhoff, R. (2014) Some remarks on proof-theoretic semantics, in T. Piecha and P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics. Berlin: Springer.

  10. Francez N., Dyckhoff R.: A note on harmony. Journal of Philosophical Logic 41, 613–628 (2012)

    Article  Google Scholar 

  11. Gentzen, G. (1934/35) Untersuchungen über das logische Schließen, Mathematische Zeitschrift 39:176–210, 405–431 (English translation in: The Collected Papers of Gerhard Gentzen (ed. M. E. Szabo), Amsterdam: North Holland (1969), pp. 68–131).

  12. Hallnäs L.: Partial inductive definitions. Theoretical Computer Science. 87, 115–142 (1991)

    Article  Google Scholar 

  13. Hallnäs, L., and P. Schroeder-Heister (1990/91) A proof-theoretic approach to logic programming: I. Clauses as rules. II. Programs as definitions, Journal of Logic and Computation 1:261–283, 635–660.

  14. Hazen, A. P., and F. J. Pelletier (2014) Gentzen and Jaśkowski natural deduction: Fundamentally similar but importantly different, Studia Logica (A. Indrzejczak (ed.), Gentzen’s and Jaśkowski’s Heritage: 80 Years of Natural Deduction and Sequent Calculi, this issue).

  15. Jaśkowski, S. (1934) On the rules of suppositions in formal logic, Studia Logica 1:5– 32 (reprinted in: S. McCall (ed.), Polish Logic 1920–1939, Oxford 1967, pp. 232–258).

  16. López-Escobar, E. G. K. (1999) Standardizing the N systems of Gentzen’, in X. Caicedo, and C. H. Montenegro (eds.), Models, Algebras and Proofs (Lecture Notes in Pure and Applied Mathematics, Vol. 203), Marcel Dekker, New York, pp. 411–434.

  17. Lorenzen, P. (1955) Einführung in die operative Logik und Mathematik, Springer, Berlin (2nd edition 1969).

  18. Naibo, A., and M. Petrolo (2014) Are uniqueness and deducibility of identicals the same?, Theoria, in press.

  19. Olkhovikov, G. K., and P. Schroeder-Heister (2014a) On flattening elimination rules, Review of Symbolic Logic 7:60–72.

  20. Olkhovikov, G. K., and P. Schroeder-Heister (2014b) Proof-theoretic harmony and the levels of rules: General non-flattening results, in E. Moriconi, and L. Tesconi (eds.), Second Pisa Colloquium in Logic, Language and Epistemology, ETS, Pisa.

  21. Piecha, T., W. de Campos Sanz, and P. Schroeder-Heister (2014) Failure of completeness in proof-theoretic semantics, Journal of Philosophical Logic, in press.

  22. Plato, J. von (2001) Natural deduction with general elimination rules, Archive for Mathematical Logic 40:541–567.

  23. Prawitz, D. (1965) Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm (Reprinted Mineola NY: Dover Publ., 2006).

  24. Prawitz, D. (1973) Towards a foundation of a general proof theory, in P. Suppes et al. (eds.), Logic, Methodology and Philosophy of Science IV, North-Holland, pp. 225–250.

  25. Prawitz D.: On the idea of a general proof theory. Synthese 27, 63–77 (1974)

    Article  Google Scholar 

  26. Prior A. N.: The runabout inference-ticket. Analysis 21, 38–39 (1960)

    Article  Google Scholar 

  27. Read S.: General-elimination harmony and the meaning of the logical constants. Journal of Philosophical Logic 39, 557–576 (2010)

    Article  Google Scholar 

  28. Read, S. (2014) General-elimination harmony and higher-level rules, in H. Wansing (ed.), Dag Prawitz on Proofs and Meaning. Heidelberg: Springer.

  29. Schroeder-Heister, P. (1981) Untersuchungen zur regellogischen Deutung von Aussagenverknüpfungen, Doctoral dissertation, Universität Bonn [see author’s homepage].

  30. Schroeder-Heister, P. (1984a) Generalized rules for quantifiers and the completeness of the intuitionistic operators \({\bigwedge, \bigvee, \rightarrow, \perp, \forall, \exists}\), in M. M. Richter, E. Börger,W. Oberschelp, B. Schinzel, and W. Thomas, (eds.), Computation and Proof Theory. Proceedings of the Logic Colloquium held in Aachen, July 18-23, 1983, Part II. (Lecture Notes in Mathematics Vol. 1104), Springer, Berlin, pp. 399–426.

  31. Schroeder-Heister, P. (1984b) A natural extension of natural deduction, Journal of Symbolic Logic 49:1284–1300.

  32. Schroeder-Heister, P. (1987) Structural Frameworks with Higher-Level Rules, Habil. thesis, Universität Konstanz [see author’s homepage].

  33. Schroeder-Heister P.: Validity concepts in proof-theoretic semantics. Synthese 148, 525–571 (2006)

    Article  Google Scholar 

  34. Schroeder-Heister, P. (2011) Schluß und Umkehrschluß: Ein Beitrag zur Definitionstheorie, in C. F. Gethmann (ed.), Lebenswelt und Wissenschaft. Kolloquienbeitr äge und öffentliche Vorträge des XXI. Deutschen Kongresses für Philosophie (Essen 15. - 19.09. 2008), Meiner, Hamburg.

  35. Schroeder-Heister, P. (2013) Definitional Reflection and Basic Logic, Annals of Pure and Applied Logic (Special issue, Festschrift 60th Birthday Giovanni Sambin) 164:491–501.

  36. Schroeder-Heister, P. (2014a) Generalized elimination inferences, higher-level rules, and the implications-as-rules interpretation of the sequent calculus, in L. C. Pereira, E. H. Haeusler, and V. de Paiva (eds.), Advances in Natural Deduction: A Celebration of Dag Prawitz’s Work, Springer, Heidelberg, pp. 1–29.

  37. Schroeder-Heister, P. (2014b) Harmony in proof-theoretic semantics: A reductive analysis, in H. Wansing (ed.), Dag Prawitz on Proofs and Meaning, Springer, Heidelberg.

  38. Tennant, N. (1992) Autologic, Edinburgh University Press, Edinburgh,.

  39. Tennant N.: Ultimate normal forms for parallelized natural deductions. Logic Journal of the IGPL 10, 299–337 (2002)

    Article  Google Scholar 

  40. Whitehead, A. N., and B. Russell (1910) Principia Mathematica, Cambridge University Press, Cambridge (2nd edition 1927).

  41. Zucker J.I., Tragesser R.S.: The adequacy problem for inferential logic. Journal of Philosophical Logic 7, 501–516 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schroeder-Heister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder-Heister, P. The Calculus of Higher-Level Rules, Propositional Quantification, and the Foundational Approach to Proof-Theoretic Harmony. Stud Logica 102, 1185–1216 (2014). https://doi.org/10.1007/s11225-014-9562-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-014-9562-3

Keywords

Navigation