Skip to main content

Advertisement

Log in

Evolution of Natural Agents: Preservation, Advance, and Emergence of Functional Information

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For semantic theories of information in cybernetics see (Carnap and Bar-Hillel 1952; D’Alfonso 2011).

  2. For definition and classification of agents in the context of Artificial Intelligence, see (Franklin and Graesser 1996).

  3. Here my understanding of signs differs from Peirce: if an object releases a mark, then this mark is not a sign yet. It belongs to “hidden correlations” in the outside world unless it is detected and utilized by some agents as a sign.

  4. The term inheritome (i.e., heritable information passed from parents to offspring) was suggested by Prasad et al. (2015).

  5. DNA replication is a direct copying because new nucleotides come into direct contact with matching parental nucleotides. In contrast, new histone modifications are added without direct contact with parental histone marks.

  6. The difference between copying and coding is not qualitatively sharp because the input and output are different even during DNA copying, where nucleotides A, C, G, and T are paired with different nucleotides T, G, C, and A, respectively. However, copying is reversible and recursive, whereas coding is irreversible, as in protein synthesis.

  7. Here I do not consider human codes that can be fixed by design (e.g., Morse code). However, even human codes that are fixed within our life time may change over millennia together with other cultural features.

  8. Note, that I consider emergence as a semiotic phenomenon (i.e., change of interpretation by agents) rather than simply an unpredictable thing, event, or a new kind of causation in nature, as discussed by Kim (1999).

  9. Here I do not discuss additional possible functions of wing-like appendages, such as thermoregulation (Kingsolver and Koehl 1985) or sexual display (Dickinson and Dudley 2009).

References

  • Baldwin, M. J. (1896). A new factor in evolution. American Naturalist, 30, 441–451.

    Article  Google Scholar 

  • Barbieri, M. (2003). The organic codes: An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2007). The origin and evolution of semiosis. In G. Witzany (Ed.), Biosemiotics in transdisciplinary contexts. Proceedings of the Gathering in Biosemiotics 6, Salzburg 2006 (pp. 105–113). Vilnius: Umweb Publications.

    Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: a new understanding of life. Die Naturwissenschaften, 95(7), 577–599.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, M. (2009). Three types of semiosis. Biosemiotics, 2(1), 19–30.

    Article  Google Scholar 

  • Bickhard, M. H. (2005). Functional scaffolding and self-scaffolding. New Ideas in Psychology, 23, 166–173.

    Article  Google Scholar 

  • Bordonaro, M., & Ogryzko, V. (2013). Quantum biology at the cellular level--elements of the research program. Biosystems, 112(1), 11–30.

    Article  PubMed  Google Scholar 

  • Brakefield, P. M. (2011). Evo-devo and accounting for Darwin’s endless forms. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 366(1574), 2069–2075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Čadková, L. (2015). Do they speak language? Biosemiotics, 8(1), 2–27.

    Google Scholar 

  • Carnap, R., & Bar-Hillel, Y. (1952). An outline of a theory of semantic information (Technical Report 247). Cambridge: MIT Research Laboratory of Electronics.

    Google Scholar 

  • D’Alfonso, S. (2011). On quantifying semantic information. Information, 1(2), 61–101.

    Article  Google Scholar 

  • Danchin, E., Charmantier, A., Champagne, F. A., Mesoudi, A., Pujol, B., & Blanchet, S. (2011). Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nature Reviews Genetics, 12(7), 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Dawkins, R. (1978). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1986). The blind watchmaker (1 Americanth ed.). New York: Norton.

    Google Scholar 

  • Dickinson, M., & Dudley, R. (2009). Flight. In V. R. R. T. Carde (Ed.), Encyclopedia of insects (2nd ed., pp. 364–371). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Edelman, G. M. (1987). Neural darwinism: The theory of neuronal group selection. New York: Basic Books.

    Google Scholar 

  • Emmeche, C., & Hoffmeyer, J. (1991). From language to nature - the semiotic metaphor in biology. Semiotica, 84(1/2), 1–42.

    Article  Google Scholar 

  • Fox, T. D. (2012). Mitochondrial protein synthesis, import, and assembly. Genetics, 192(4), 1203–1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin, S., & Graesser, A. E. (1996). Is it an agent, or just a program?: A taxonomy for autonomous agents. In M. W. J. P. Muller & N. R. Jennings (Eds.), Proceedings of the third international workshop on agent theories, architectures and languages (pp. 21–35). London: Springer.

    Google Scholar 

  • Ginsburg, S., & Jablonka, E. (2009). Epigenetic learning in non-neural organisms. Journal of Biosciences, 34(4), 633–646.

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt, R. (1940). The material basis of evolution. New Haven: CT Yale University Press.

    Google Scholar 

  • Gontier, N. (2006). Introduction to evolutionary epistemology, language and culture. In N. Gontier, J. P. van Bendegem, & D. Aerts (Eds.), Evolutionary epistemology, language and culture. A non-adaptionist, systems theoretical approach (pp. 1–29). Netherlands: Springer.

    Chapter  Google Scholar 

  • Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, 3(2), 115–151.

    Article  Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation - a missing term in the science of form. Paleobiology, 8(1), 4–15.

    Article  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life (Life and mind). Cambridge: MIT Press.

    Google Scholar 

  • James, W. (1907). Pragmatism, a new name for some old ways of thinking, popular lectures on philosophy. New York: Longmans, Green, and Co.

    Book  Google Scholar 

  • Jones, T. D., Ruben, J. A., Martin, L. D., Kurochkin, E. N., Feduccia, A., Maderson, P. F., et al. (2000). Nonavian feathers in a late Triassic archosaur. Science, 288(5474), 2202–2205.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. (1999). Making sense of emergence. Philosophical Studies, 95, 3–36.

    Article  Google Scholar 

  • King, N., Westbrook, M. J., Young, S. L., Kuo, A., Abedin, M., Chapman, J., et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 451(7180), 783–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsolver, J. G., & Koehl, M. A. R. (1985). Aerodynamics, thremoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution, 39(3), 488–504.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1), 1–7.

    Google Scholar 

  • Krampen, M. (1981). Phytosemiotics. Semiotica, 36(3/4), 187–209.

    Google Scholar 

  • Kull, K. (2009). Vegetative, animal, and cultural semiosis: the semiotic threshold zones. Cognitive Semiotics, 4, 8–27.

    Article  Google Scholar 

  • Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Muller, G. B., & Moczek, A., et al. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Biological Sciences, 282(1813). doi: 10.1098/rspb.2015.1019.

  • Laubichler, M. D., & Renn, J. (2015). Extended evolution: a conceptual framework for integrating regulatory networks and niche construction. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution. doi:10.1002/jez.b.22631.

    PubMed  PubMed Central  Google Scholar 

  • Lickliter, R. (2014). Developmental evolution and the origins of phenotypic variation. Biomol Concepts, 5(4), 343–352.

    Article  CAS  PubMed  Google Scholar 

  • Locke, J. (1853). An essay concerning human understanding. Philadelphia: Troutman & Hayes.

    Google Scholar 

  • Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: The realization of the living (Boston Studies in the Philosophy of Science, Vol. 42). Dordecht: D. Reidel Publishing Co.

    Google Scholar 

  • Meyen, S. V. (1987). Fundamentals of palaeobotany. London: Chapman and Hall.

    Book  Google Scholar 

  • Morris, C. W. (1964). Signification and significance: A study of the relations of signs and values. Cambridge: MIT Press.

    Google Scholar 

  • Penrose, R. (1989). The emperor’s new mind: Concerning computers, minds and the laws of physics. Oxford: Oxford University Press.

    Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010). Elements of an extended evolutionary synthesis. In M. Pigliucci & G. B. Müller (Eds.), Evolution - the extended synthesis (pp. 3–17). Cambridge: MIT Press.

    Chapter  Google Scholar 

  • Prasad, N. G., Dey, S., Joshi, A., & Vidya, T. N. C. (2015). Rethinking inheritance, yet again: Inheritomes, contextomes and dynamic phenotypes. bioArxiv.

  • Prodi, G. (1988). Material bases of signification. Semiotica, 69(3/4), 191–241.

    Google Scholar 

  • Prum, R. O., & Brush, A. H. (2002). The evolutionary origin and diversification of feathers. Quarterly Review of Biology, 77(3), 261–295.

    Article  PubMed  Google Scholar 

  • Riegler, A. (2006). Like cats and dogs: Radical constructivism and evolutionary epistemology. In N. Gontier, J. P. van Bendegem, & D. Aerts (Eds.), Evolutionary epistemology, language and culture. A non-adaptionist, systems theoretical approach (pp. 47–65). Netherlands: Springer.

    Chapter  Google Scholar 

  • Rosen, R. (1970). Dynamical system theory in biology. New York: Wiley-Interscience.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(379–423), 623–656.

    Article  Google Scholar 

  • Sharov, A. A. (1992). Biosemiotics: functional-evolutionary approach to the problem of the sense of information. In T. A. Sebeok & J. Umiker-Sebeok (Eds.), Biosemiotics. The semiotic web 1991 (pp. 345–373). New York: Mouton de Gruyter.

    Google Scholar 

  • Sharov, A. A. (2009a). Coenzyme autocatalytic network on the surface of oil microspheres as a model for the origin of life. International Journal of Molecular Sciences, 10(4), 1838–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharov, A. A. (2009b). Genetic gradualism and the extraterrestrial origin of life. Journal of Cosmology, 5, 833–842.

    Google Scholar 

  • Sharov, A. A. (2009c). Role of utility and inference in the evolution of functional information. Biosemiotics, 2(1), 101–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharov, A. A. (2010). Functional information: towards synthesis of biosemiotics and cybernetics. Entropy, 12(5), 1050–1070.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharov, A. A. (2013). Minimal mind. In L. Swan (Ed.), Origins of mind (Biosemiotics, Vol. 8, pp. 343–360). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Sharov, A. A. (2014). Evolutionary constraints or opportunities? Biosystems, 123, 9–18.

    Article  PubMed  Google Scholar 

  • Sharov, A. A., & Vehkavaara, T. (2015). Protosemiosis: agency with reduced representation capacity. Biosemiotics, 8(1), 103–123.

    Article  PubMed  Google Scholar 

  • Shyh-Chang, N., Zheng, Y., Locasale, J. W., & Cantley, L. C. (2011). Human pluripotent stem cells decouple respiration from energy production. EMBO Journal, 30(24), 4851–4852.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson, G. G. (1953). The major features of evolution (Columbia biological series, Vol. 17). New York: Columbia University Press.

    Google Scholar 

  • Uexküll, J. v. (1982). The theory of meaning. Semiotica, 42(1), 25–82.

    Google Scholar 

  • Vavilov, N. I. (1935). The law of homological series in heritable variations. In N. I. Vavilov (Ed.), Theoretical basis for plant breeding (Vol. 1, pp. 75–128). Moscow: Selhozgiz.

    Google Scholar 

  • Villarreal, L. P. & Witzany, G. (2010). Viruses are essential agents within the roots and stem of the tree of life. Journal of Theoretical Biology, 292, 698-710.

  • Waddington, C. H. (1968). Towards a theoretical biology. Nature, 218(5141), 525–527.

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

This research was supported entirely by the Intramural Research Program of the National Institute on Aging (NIA/NIH), project ZIA AG000656-13. The content of the paper is not endorsed or suggested by the funding organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei A. Sharov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharov, A.A. Evolution of Natural Agents: Preservation, Advance, and Emergence of Functional Information. Biosemiotics 9, 103–120 (2016). https://doi.org/10.1007/s12304-015-9250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-015-9250-3

Keywords

Navigation