Skip to main content
Log in

Stasis is an Inevitable Consequence of Every Successful Evolution

  • Review
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Evolutionary stasis is discussed in light of the idea that the common output of every successful evolution is the creation of the entities that are increasingly resistant to further change. The moving force of evolution is entropy. This general aspiration for chaos is a cause of the mortality of organisms and extinction of species. However, being a prerequisite for any motion, entropy generates (by chance) novelties, which may happen to be (by chance) more resistant to further decay and thus survive. The entities that change rapidly disappear. All existing entities are endowed with an ability to resist further change. In simple organisms, the stasis is primarily achieved by means of the high fidelity of DNA reproduction. In organisms with a large genome and complex development, the achievable fidelity of genome reproduction fails to guarantee homeorhetic reproduction: there is more mutation than reproduction. Such species must be capable of surviving and remain phenotypically unchanged at continuous changes of their genes. This capability (canalization or robustness) reflects a global degeneracy of the link structure-function: there are more genotypes than phenotypes. Hence, function (i.e. meaning), not structure, is selected. The selection for successful ontogenesis in a varying environment creates developmental robustness to mutational and environmental perturbations and, consequently, to the halt of evolution. Evolution is resistance to entropy, the adaptation to environment being only one of the means of this resistance. Everything essential in biology is determined not by physical causality but by semantic rules and goal-directed programs. This principal operates on various levels of biological organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here I mean biological (organic) information as a new type of natural entity (Barbieri 2004, 2008).

References

  • Abel, D. L., & Trevors, J. T. (2006). Self-organization vs. self-ordering events in life-origin models. Physics of Life Reviews, 3, 211–228.

    Article  Google Scholar 

  • Ancel, L. W. (2000). Undermining the Baldwin expediting effect: Does phenotypic plasticity accelerate evolution? Theoretical Population Biology, 58, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Ayala, F. J., & Campbell, C. A. (1974). Frequency-dependent selection. Annual Review of Ecology, Evolution and Systematics, 5, 115–138.

    Article  Google Scholar 

  • Barbieri, M. (2004). The definitions of information and meaning. Two possible boundaries between physics and biology. Rivista di Biologia, Biology Forum, 97, 91–110.

    Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: A new understanding of life. Naturwissenschaften. doi:10.1007/s00114-008-0368-x.

  • Baum, J. S., George, J. P., & St McCall, K. (2005). Programmed cell death in the germline. Seminars in Cell and Developmental Biology, 16, 245–259.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, A., & Siegal, M. L. (2003). Evolutionary capacitance as a general feature of complex gene networks. Nature, 424, 549–552.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, J. D., Labthavicul, S. T., Otey, C. R., & Arnold, F. A. (2006). Protein stability promotes evolvability. Proceedings of the National Academy of Sciences of the United States America, 103, 5869–5874.

    Article  CAS  Google Scholar 

  • Borenstein, E., & Ruppin, E. (2006). Direct evolution of genetic robustness in microRNA. Proceedings of the National Academy of Sciences of the United States America, 103, 6593–6598.

    Article  CAS  Google Scholar 

  • Bowie, J. U., Reidhaar-Olson, J. F., Lim, W. A., & Sauer, R. T. (1990). Deciphering the message in protein sequences: Tolerance to amino acid substitutions. Science, 247, 1306–1310.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, A. D. (1991). The Croonian lecture: Genostasis and the limits to evolution. Philosophical Transactions of the Royal Society of London B, 333, 289–305.

    Article  CAS  Google Scholar 

  • Bradshaw, A. D. (2006). Unraveling phenotypic plasticity—why should be bother? New Phytologist, 170, 644–648.

    Article  PubMed  Google Scholar 

  • Brooks, D. R. (2000). The nature of organism. Life has a life of its own. Annals of the New York Academy of Sciences, 901, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. R., & Wiley, E. O. (1986). Evolution as entropy. Chicago: The University of Chicago Press.

    Google Scholar 

  • Carson, H. L. (1982). Speciation as a major reorganization of polygenic balances. In C. Barrigozzi (Ed.), Mechanisms of speciation (pp. 411–433). New York: Liss.

    Google Scholar 

  • Cavalier-Smith, T. (2006). Cell evolution and earth history: Stasis and revolution. Philosophical Transactions of Royal Society of London B, 361, 969–1006.

    Article  CAS  Google Scholar 

  • Chaitin, G. J. (1974). Information-theoretic computational complexity. IEEE Transactions on Information Theory, IT20, 10–15.

    Article  Google Scholar 

  • Ciliberti, S., Martin, O. C., & Wagner, A. (2007). Innovation and robustness in complex regulatory gene networks. Proceedings of National Academy of Sciences of the United States of America, 104, 13591–13596.

    Article  CAS  Google Scholar 

  • Cox, M. M. (1994). Why does RecA protein hydrolyze ATP? Trends in Biochemistry Sciences, 19, 217–222.

    Article  CAS  Google Scholar 

  • Crow, J. F., & Kimura, M. (1979). Efficiency of truncation selection. Proceedings of the National Academy of Sciences of the United States of America, 76, 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Dawkins, R. (1982). The extended phenotype. Oxford: W. H. Freeman.

    Google Scholar 

  • De Visser, J. A. G. M., Hermisson, J., Wagner, G. P., Meyers, L. A., Bagheri-Chaighian, H., Blanchard, J. L., et al. (2003). Perspective: Evolution and detection of genetic robustness. Evolution, 57, 1959–1972.

    Article  PubMed  Google Scholar 

  • Delbrück, M. (1986). Mind from matter? Palo Alto: Blackwell Scientific Publications, Inc.

    Google Scholar 

  • Denbigh, K. (1975). A non-conserved function for organized systems. In L. Kubat & J. Zeman (Eds.), Entropy and information in science and philosophy, (pp. 83–92). Elsevier.

  • Drake, J. W., Charlesworth, B., Charlesworth, D., & Crow, J. F. (1998). Rates of spontaneous mutation. Genetics, 148, 1667–1686.

    PubMed  CAS  Google Scholar 

  • Ehrenberg, M., & Bilgin, N. (1998). Measurement of ribosomal accuracy and proofreading in E. coli burst systems. In R. Martin (Ed.), Protein synthesis: Methods and protocols. Methods in molecular biology, Vol. 77 (pp. 227–241).

  • Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: Alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman, Cooper.

    Google Scholar 

  • Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., et al. (2005). The dynamics of evolutionary stasis. Paleobiology, 31, 133–145.

    Article  Google Scholar 

  • Elena, S. F., Wilke, C. O., Ofria, C., & Lenski, R. E. (2007). Effects of population size and mutation rate on the evolution of mutational robustness. Evolution, 61, 666–674.

    Article  PubMed  Google Scholar 

  • Fisher, R. A. (1958). The genetical theory of natural selection. New York: Dover Puplication.

    Google Scholar 

  • Flatt, T. (2005). The evolutionary genetics of canalization. The Quarterly Review of Biology, 80, 287–316.

    Article  PubMed  Google Scholar 

  • Flegr, J. (2010). Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms. Biology Direct, 5, 2.

    Article  PubMed  Google Scholar 

  • Gould, S. J., & Eldredge, N. (1977). Punctuated equilibria: The tempo and mode in evolution reconsidered. Paleobiology, 3, 115–151.

    Google Scholar 

  • Gould, S. J., & Eldredge, N. (1993). Punctuated equilibrium comes of age. Nature, 366, 223–227.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. G., Powers, E. K., Mcllvaine, R. T., & Ean, V. H. (1978). The frequency and financial burden of genetic disease in a pediatric hospital. American Journal of Medical Genetics, 1, 417–436.

    Article  PubMed  CAS  Google Scholar 

  • Heino, M., Metz, J. J., & Kaitala, V. (1998). The enigma of frequency-dependent selection. Tree, 13, 367–370.

    PubMed  CAS  Google Scholar 

  • Hermisson, J., & Wagner, G. P. (2004). The population genetic theory of hidden variation and genetic robustness. Genetics, 168, 2271–2284.

    Article  PubMed  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral and symbolic variation in the history of life. Cambridge: MIT.

    Google Scholar 

  • Kauffman, S. A. (1973). Control circuits for determination and transdetermination. Science, 181, 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kirschner, M., & Gerhart, J. (1998). Evolvability. Proceedings of the National Academy of Sciences of the United States of America, 95, 8420–8427.

    Article  PubMed  CAS  Google Scholar 

  • Kitano, H. (2004). Biological robustness. Nature Reviews Genetics, 5, 827–837.

    Article  Google Scholar 

  • Kolmogorov, A. N. (1968). Logical basis for information theory and probability theory. IEEE Transactions on Information Theory, IT-14, 662–664.

    Article  Google Scholar 

  • Kondrashov, A. S. (1982). Selection against harmful mutations in large sexual and asexual populations. Genetics Research, 40, 325–332.

    Article  CAS  Google Scholar 

  • Kondrashov, A. S. (1988). Deleterious mutations and the evolution of sexual reproduction. Nature, 336, 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A. S. (1995). Modifiers of mutation-selection balance: General approach and the evolution of mutation rates. Genetics Research, 66, 53–69.

    Article  Google Scholar 

  • Kondrashov, A. S. (2002). Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Human Mutation, 21, 12–27.

    Article  Google Scholar 

  • Krakauer, D. C., & Plotkin, J. B. (2002). Redundancy, antiredundancy, and the robustness of genomes. Proceedings of the National Academy of Sciences of the United States of America, 99, 1405–1409.

    Article  PubMed  CAS  Google Scholar 

  • Laland, K. N., & Sterelny, K. (2006). Perspective: Seven reasons (not) to neglect niche construction. Evolution, 60, 1751–1762.

    PubMed  Google Scholar 

  • Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell, 88, 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., & Walsh, J. B. (1998). Genetics and analysis of quantitative traits. Sinauer Associates Inc.

  • Markov, A. V., & Korotaev, A. V. (2007). The dynamics of Phanerozoic marine animal diversity agrees with the hyperbolic growth model. Zhurnal Obshchei Biologii, 68, 3–18 (Russian).

    PubMed  CAS  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge: Harvard University Press.

    Google Scholar 

  • Mayr, E. (1970). Populations, species and evolution. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A., et al. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science, 276, 1560–1563.

    Article  PubMed  CAS  Google Scholar 

  • Merser, E. H. (1981). The foundations of biological theory. New York: Wiley-Interscience.

    Google Scholar 

  • Mori, C., Nakamura, N., Dix, D. J., Fujioka, M., Nakagawa, S., Shiota, K., et al. (1997). Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Developmental Dynamics, 208, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Mortimer, R. K., & Johnston, J. R. (1959). Life span of individual yeast cells. Nature, 183, 1751–1752.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156, 297–304.

    PubMed  CAS  Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Oyama, S. (2000). The ontogeny of information. Developmental systems and evolution. Durham: Duke University Press.

    Google Scholar 

  • Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Price, T. D., Qvarnstrom, A., & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London B, 270, 1433–1440.

    Article  Google Scholar 

  • Prigogine, I. (1973). Can thermodynamics explain biological order. Impact of Science on Society, 23(3), 159–179.

    Google Scholar 

  • Roach, J. C., Glusman, G., Smit, A. F. A., Huff, C. D., Hubley, R. T., Shannon, P. T., et al. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636–639.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford, S. L. (2003). Between genotype and phenotype: Protein chaperons and evolvability. Nature Reviews Genetics, 4, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Rutherford, S. L., & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396, 336–342.

    Article  PubMed  CAS  Google Scholar 

  • Schmalhausen, I. I. (1949). Factors of evolution: The theory of stabilizing selection. Philadelphia: Blakiston (Reprinted 1987, Chicago: University of Chicago Press).

    Google Scholar 

  • Schwenk, K., & Wagner, G. P. (2001). Function and the evolution of phenotypic stability: Connecting pattern to process. American Zoologist, 41, 552–563.

    Article  Google Scholar 

  • Seaborg, D. M. J. (1999). Evolutionary feedback: A new mechanism for stasis and punctuated evolutionary change based on integration of the organism. Journal of Theoretical Biology, 198, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Sharov, A. A. (2009). Role of utility and inference in the evolution of functional information. Biosemiotics, 2, 101–115.

    Article  PubMed  Google Scholar 

  • Shcherbakov, V. P. (2010). Biological species is the only possible form of existence for higher organisms. Evolutionary meaning of sexual reproduction. Biology Direct, 5, 14.

    Article  PubMed  Google Scholar 

  • Sheldon, P. R. (1996). Plus ca change—a model for stasis and evolution in different environments. Paleaeogeography, Paleaeoclimatology, Paleaeoecology, 127, 209–227.

    Article  Google Scholar 

  • Sniegowski, P. D., Gerrish, P. J., Johnson, T., & Shaver, A. (2000). The evolution of mutation rates: Separating causes from consequences. Bioessays, 22, 1057–1066.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, S. C. (2002). Progress on canalization. Proceedings of the National Academy of Sciences of the United States of America, 99, 10229–10230.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, E. J., Madden, R., Paul, G., & Taddei, F. (2005). Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.

    Article  PubMed  Google Scholar 

  • Teilhard de Chardin, P. (1959). The phenomenon of man. New York: Harpers & Brothers.

    Google Scholar 

  • Templeton, A. R. (1980). The theory of speciation via founder principle. Genetics, 94, 1011–1038.

    PubMed  CAS  Google Scholar 

  • Waddington, C. H. (1942). Canalization of development and the inheritance of acquired characters. Nature, 150, 563–565.

    Article  Google Scholar 

  • Waddington, C. H. (1953). The genetic assimilation of an acquired character. Evolution, 7, 118–126.

    Article  Google Scholar 

  • Wagner, A. (2000). Robustness against mutations in genetic networks of yeast. Nature Genetics, 24, 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. (2005). Robustness and evolvability in living systems. Princeton: Princeton University Press.

    Google Scholar 

  • Wagner, G. P., & Schwenk, K. (2000). Evolutionary stable configurations: Functional integration and the evolution of phenotypic stability. Evolutionary Biology, 31, 155–217.

    Article  Google Scholar 

  • Wake, D. B., Roth, G., & Wake, M. H. (1983). On the problem of stasis in organismal evolution. Journal of Theoretical Biology, 101, 211–224.

    Article  Google Scholar 

  • Walter, C. A., Intano, G. W., McCarrey, J. R., McMahan, C. A., & Walter, R. B. (1998). Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 10015–10019.

    Article  PubMed  CAS  Google Scholar 

  • Wicken, J. S. (1979). The generation of complexity in evolution: A thermodynamic and information-theoretical discussion. Journal of Theoretical Biology, 77, 349–365.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S. (1931). Evolution of Mendelian populations. Genetics, 16, 97–159.

    PubMed  CAS  Google Scholar 

  • Zaher, H. S., & Green, R. (2009). Fidelity at the molecular level: Lessons from protein synthesis. Cell, 136, 46–62.

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank Aleksey Terentiev for critical reading of the manuscript and Vladimir Rusalov and Dmitry for style correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Shcherbakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcherbakov, V.P. Stasis is an Inevitable Consequence of Every Successful Evolution. Biosemiotics 5, 227–245 (2012). https://doi.org/10.1007/s12304-011-9122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-011-9122-4

Keywords

Navigation