Skip to main content

Programmed Death Phenomena at Various Levels of Development of the Living Systems

  • Conference paper
Formal Descriptions of Developing Systems

Part of the book series: NATO Science Series ((NAII,volume 121))

  • 181 Accesses

Abstract

A concept is presented assuming that any complex biological system, from intracellular organelle (mitochondria) to multicellular organism is equipped with a program of self-elimination. Such a suicide program is actuated when the system in question appears to be unwanted for a system occupying a higher position in biological hierarchy. This principle called the “Samurai law of biology” (“It is better to die than to be wrong”) will be illustrated considering defence of organelles, cells, organs and organisms against damaging effects of reactive oxygen species (ROS). In bacteria, DNA damage initiates (a) induction of synthesis of reparation enzymes, (b) arrest of the cell divisions and (c) autolysin activation resulting in the programmed death. In mitochondria, ROS can open the permeability transition pore, initiating in this way programmed death of mitochondria (mitoptosis), which can purify intracellular population of mitochondria from the ROS-overproducing organelles. In yeast, H2O2 induces some proteins causing programmed death. Inhibition of the protein synthesis prevents this effect. Also in yeast, high levels of a pheromone proved to cause ROS formation resulting in programmed death. In human HeLa cells, tumour necrosis factor α (TNF) initiates ROS formation and then programmed death (apoptosis). At supracellular level, the programmed death signal is transmitted from the TNF-treated to intact cells and such a transmission is arrested by catalase, indicating that H2O2 serves as an intercellular programmed death messenger. Conversion of a tadpole to a frog is shown to be mediated by thyroxine causing induction of an NO synthase in the tadpole tail cells. This results in strong increase in the H2O2 level due to inhibition by NO of catalase and gluthatione peroxidase. Moreover, NO causes antimycin A-like inhibition of mitochondrial respiratory chain, which strongly stimulates ROS production. Due to massive apoptosis, the tail disappears (organoptosis). It is suggested that ROS mediate aging which is considered as programmed death of organism (phenoptosis). The “Samurai law” is regarded as a mechanism preventing the great destructive potential of environment, as well as of the living systems per se, from being realised. It helps organisms to maintain intact their genomes that were developed during billion years of evolution but can be destroyed during one or several generations by a single mutation in one of thousands genome-composing genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weismann A. (1889) Essays upon heredity and kindred biological problems, Claderon Press, Oxford.

    Google Scholar 

  2. Medawar P.B. (1952) An Unsolved Problem Of Biology, Lewis H.K., London

    Google Scholar 

  3. Bowles J.T. (2000) Shattered: Medawar’s Test Tubes And Their Enduring Legacy Of Chaos, Med. Hypotheses, 54, 326–339.

    Article  Google Scholar 

  4. Skulachev V.P. (2002) Programmed Death Phenomena: From Organelle To Organism, Ann. N.Y. Acad. Sci., 959, 214–237.

    Article  Google Scholar 

  5. Muir W.M. & Howard R.D. (1999) Possible Ecological Risks Of Transgenic Organism Release When Transgenes Affect Mating Success: Sexual Selection And The Trojan Gene Hypothesis, Proc. Natl. Acad. Sci. Usa, 96, 13853–13866.

    Article  Google Scholar 

  6. Pawlowski B., Dunber R.I.M., & Lipowicz A. (2000) Tall Men Have More Reproductive Success, Nature, 403, 156.

    Google Scholar 

  7. Lewis K. (2000) Programmed Death In Bacteria, Microbiol. Mol. Biol. Rev., 64, 503–514

    Article  Google Scholar 

  8. Skulachev V.P. (2000) Mitochondria In The Programmed Death Phenomena; A Principle Of Biology: « It Is Better To Die Than To Be Wrong», Iubmb Life, 49, 365–372

    Article  Google Scholar 

  9. Skulachev V.P. (2001) The Programmed Death Phenomena, Aging And The Samurai Law Of Biology, Exp. Gerontology, 36, 995–1024

    Article  Google Scholar 

  10. Zorov D.B, Kinally K.W. & Tedeschi H (1992) Voltage Activation Of Heart Inner Mitochondrial Membrane Channels, J. Bioenerg. Biomembr. 24, 119–124

    Article  Google Scholar 

  11. Zoratti M. & Szabo I. (1995) The Mitochondrial Permeability Transition, Biochim. Biophys. Acta, 1241, 139–176

    Article  Google Scholar 

  12. Halestrap A.P., Woodfield K.-Y. & Connern C.P. (1997) Oxidative Stress, Thiol Reagents, And Membrane Potential Modulate The Mitochondrial Permeability Transition By Affecting Nucleotide Binding To The Adenine Nucleotide Translocase, J.Biol.Chem., 272, 3346–3354

    Article  Google Scholar 

  13. Costantini P., A.-S. Belzacq A.-S., Vieira H.L., Larochette N., De Pablo M.A., Zamzami N., Susin S.A., Brenner C. & Kroemer G. (2000) Oxidation Of A Critical Thiol Residue Of The Adenine Nucleotide Translocator Enforces Bcl-2-Independent Permeability Transition Pore Opening And Apoptosis, Oncogene, 19, 307–314

    Article  Google Scholar 

  14. Skulachev V.P. (1998) Uncoupling: New Approaches To An Old Problem Of Bioenergetics. Biochim. Biophys. Acta, 1363, 100–124

    Article  Google Scholar 

  15. Skulachev V.P. (1994) Lowering Of Intracellular O2 Concentration As A Special Function Of Respiratory Systems Of Cells, Biochemistry (Moscow), 59, 1433–1434

    Google Scholar 

  16. Skulachev V.P. (1996) Role Of Uncoupled And Non-Coupled Oxidations In Maintenance Of Safely Low Levels Of Oxygen And Its One-Electron Reductants, Quart. Rev. Biophys., 29, 169–202

    Article  Google Scholar 

  17. Skulachev V.P. (1996) Why Are Mitochondria Involved In Apoptosis? Permeability Transition Pores And Apoptosis As Selective Mechanisms To Eliminate Superoxide-Producing Mitochondria And Cell, Febs Lett., 397, 7–10

    Article  Google Scholar 

  18. Parrish J., Li L., Klotz K., Ledwich D., Wang X. & Xue D. (2001) Mitochondrial Endonuclease G Is Important For Apoptosis In C. Elegans, Nature 412, 90–94

    Article  Google Scholar 

  19. Li L.Y., Luo X. & Wang X, (2001) Endonuclease G Is An Apoptotic Dnase When Released From Mitochondria, Nature 412, 95–99

    Article  Google Scholar 

  20. Widlak P, Li L.Y., Wang X. & Garrard W.T. (2001) Action Of Recombinant Human Apoptotic Endonuclease G On Naked Dna And Chromatin Substrates: Cooperation With Exonuclease And Dnase I, J. Biol. Chem., 276, 48404–48409

    Google Scholar 

  21. Susin S. A., Zamzami N., Castedo M., Hirsch T., Macho A., Daugas E., Geuskens M. & Kroemer G. (1996) Bcl-2 Inhibits The Mitochondrial Release Of An Apoptogenic Protease, J. Exp. Med., 184, 1331–1341

    Article  Google Scholar 

  22. Susin S.A., Lorenzo H.K., Zamzami N, Marzo I., Snow B.E., Brothers G.M., Mangion J., Jacotot E., Costantini P., Loeffler M., Larochette N., Goodlett D.R., Aebersold R., Siderovski D.P., Penninger J.M. & Kroemer G. (1999) Molecular Characterization Of Mitochondrial Apoptosis-Inducing Factor, Nature, 397, 441–446

    Article  Google Scholar 

  23. Liu X., Naekyung C., Yang J., Jemmerson R. & Wang X. (1996) Induction Of Apoptotic Program In Cell-Free Extracts: Requirement For Datp And Cytochrome C, Cell, 86, 147–157

    Article  Google Scholar 

  24. Yamg J., Liu X., Bhalla K., Kim C.N., Ibrado A.M., Cai J., Peng T.-L, Jones S.P. & Wanf X. (1997) Prevention Of Apoptosis By Bcl-2: Release Of Cytochrome C From Mitochondria Blocked, Science, 275, 1129–1132

    Article  Google Scholar 

  25. Kluck R.M., Bossy-Wetzel E., Green D.R & Newmeyer D.D. (1997) The Release Of Cytochrome C From Mitochondria: A Primary Site For Bcl-2 Regulation Of Apoptosis, Science, 275, 1132–1136

    Article  Google Scholar 

  26. Kluck R.M., Martin S.J., Hoffman B.M., Zhou J.S, Green D.R. & Newmeyer D.D. (1997) Cytochrome C Activation Of Cpp32-Like Proteolysis Plays A Critical Role In Xenopus Cell-Free Apoptosis System, Embo J., 16, 4639–4649

    Article  Google Scholar 

  27. Samali A., Cai J., Zhivotovsky B., Jones D.P. & Orrenius S. (1999) Presence Of A Pre-Apoptotic Complex Of Pro-Caspase-3, Hsp60 And Hsp10 In The Mitochondrial Fraction Of Jurkat Cells, Embo J., 18, 2040–2048

    Article  Google Scholar 

  28. Du C., Fang M., Li Y., Li L. & Wang X. (2000) Smac., A Mitochondrial Protein That Promotes Cytochrome C-Dependent Caspase Activation By Eliminating lap Inhibition, Cell, 102, 33–42

    Article  Google Scholar 

  29. Verhagen A.M., Ekert P.G, Pakusch M, Silke J, Connolly L.M., Reid G.E, Moritz R.L., Simpson R.J. & Vaux D.L. (2000) Identification Of Diablo, A Mammalian Protein That Promotes Apoptosis By Binding To And Antagonizing lap Proteins, Cell, 102, 43–53

    Article  Google Scholar 

  30. Newmeyer D.D., Farschon D.M. & Reed J.C. (1994) Cell-Free Apoptosis In Xenopus Egg Extracts: Inhibition By Bcl-2 And Requirement For An Organelle Fraction Enriched In Mitochodria, Cell, 79, 353–364

    Article  Google Scholar 

  31. Fletcher G.C., Xue L., Passingham S.K. & Tolkovsky A.M. (2000) Death Commitment Point Is Advanced By Axotomy In Sympathetic Neurons, J. Cell Biol, 150, 741–754

    Article  Google Scholar 

  32. Xue L., Fletcher G.C. & Tolkovsky A.M. (2001) Mitochondria Are Selectively Eliminated From Eukaryotic Cells After Blockade Of Caspases During Apoptosis, Current Biol, 11, 361–365

    Article  Google Scholar 

  33. Skulachev V.P. (1998) Cytochrome C In The Apoptotic And Antioxidant Cascades,. Febs Lett., 423, 275–280

    Article  Google Scholar 

  34. Shimizu S., Narita M. & Tsujimoto Y. (1999) Bcl-2 Family Proteins Regulate The Release Of Apoptogenic Cytochrome C By The Mitochondrial Channel Vdac, Nature, 399, 483–487

    Article  Google Scholar 

  35. Madesh M. & Hajnoczky G. (2001) Vdac-Dependent Permeabilization Of The Outer Mitochondrial Membrane By Superoxide Induces Rapid And Massive Cytochrome C Release, J. Cell Biol, 155, 1003–1015

    Article  Google Scholar 

  36. Peachman K.K., Lyles D.S. & Bass D.A. (2001) Mitochondria In Eosinophils: Functional Role In Apoptosis But Not Respiration, Proc. Natl. Acad. Sci. Usa, 98, 1717–1722

    Article  Google Scholar 

  37. Milan M., Campuzano S. & Garcia-Bellido A. (1997) Developmental Parameters Of Cell Death In The Wing Disc Of Drosophila, Proc. Natl. Acad. Sci. Usa, 94, 5691–5696

    Article  Google Scholar 

  38. Lang R., Lustig M., Francois F., Sellinger M. & Plesken Y. (1994) Apoptosis During Macrophage-Dependent Occular Tissue Remodeling, Development, 120, 3395–3403

    Google Scholar 

  39. Ijiri K. & Pötten C.S. (1987) Cell Death In Cell Hierarchies In Adult Mammalian Tissues, In Perspectives On Mammalian Cell Death, Potten C.S. Ed., Oxford University Press, Oxford, 326–356

    Google Scholar 

  40. Reznikov K.Y. (1991) Cell Proliferation And Cytogenesis In The Mouse Hippocampus, Adv. Anat. Embryol. Cell Biol, 122, 1–83

    Article  Google Scholar 

  41. Hendry J.H. & Potten C.S. (1998) Letter To The Editor. Comments On The Paper — Cell Survival In Irradiated Microcolonies: How Influential Are Neighbours?, Int. J. Radiat. Biol, 73, 575–576

    Google Scholar 

  42. Wilson J.W., Pritchard D.M., Hickman J.A. & Pötten C.S. (1998) Radiation-Induced P53 And p21waf-l/Cipl Expression In The Murine Intestinal Epithelium, Am. J. Pathol, 153, 899–909

    Article  Google Scholar 

  43. Dilber M.S. & Smith C.E. (1997) Suicide Genes And Bystander Killing: Local And Distant Effects, Gene Therapy, 4, 273–274

    Article  Google Scholar 

  44. Paillard F. (1997) Bystander Effects In Enzyme/Prodrug Gene Therapy, Gene Therapy, 4, 273–274

    Article  Google Scholar 

  45. Reznikov K., Kolesnikova L., Pramanik A., Tan-No K., Gileva I., Yakovleva T., Rigler R., Terenius L. & Balaklin G. (2000) Clustering Of Apoptotic Cells Via Bystander Killing By Peroxides, Faseb J., 14, 1754–1764

    Article  Google Scholar 

  46. Shao R., Xia W. & Hung M.-C (2000) Inhibition Of Angiogenesis And Induction Of Apoptosis Are Involved In Ela-Mediated Bystander Effect And Tumor Suppression, Cancer Res., 60, 3123–3126

    Google Scholar 

  47. Mensil M. & Yamasaki H. (2000) Bystander Effect In Herpes Simplex Virus-Thymidine Kinase/Ganciclovir Cancer Gene Therapy: Role Of Gap-Junctional Intercellular Communication, Cancer Res., 60, 3989–3999

    Google Scholar 

  48. Kagawa S., He C., Gu J., Koch P., Rha S.-J., Roth, J.A., Curley S.A., Stephens L.G. & Fang B. (2001) Antitumor Activity And Bystander Effects Of The Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (Trail) Gene, Cancer Res., 61, 3330–3338

    Google Scholar 

  49. Adachi M., Sampath J., Lan L.-B., Sun D., Hargrove P., Flatley R.M., Tatum A., Ziegelmeier M.Z., Wezeman M., Matherly L.H., Drake R.R. & Schuetz J.D. (2002) Expression Of Mrp4 Confers Resistance To Ganciclovir And Compromises Bystander Cell Killing, J. Biol. Chem. In Press, Published June 24, 2002 As Ms M203262200

    Google Scholar 

  50. Skulachev V.P. (1998) Possible Role Of Reactive Oxygen Species In Antiviral Defense. Biochemistry (Moscow), 63, 1438–1440

    Google Scholar 

  51. Clark P.J. & Evans P.C. (1954) Distance To The Nearest Neighbor As A Measure Of Spatial Relationship In Populations, Ecology, 35, 445–453

    Article  Google Scholar 

  52. Simizu S., Takada M., Umezawa K. & Imoto M. (1998) Requirement Of Caspase-3(-Like) Protease-Mediated Hydrogen Peroxide Production For Apoptosis Induced By Various Anticancer Drugs, J. Biol. Chem., 273, 26900–26907

    Article  Google Scholar 

  53. Johnson T.M., Yu Z.-X., Ferrans V.J., Lowenstein R.A. & Finkel T. (1996) Reactive Oxygen Species Are Downstream Mediators Of P53-Dependent Apoptosis, Proc. Natl. Acad. Sci. Usa, 93, 11848–11852

    Article  Google Scholar 

  54. Goldkorn T., Balaban N., Shannon M., Chea V., Matsukuma K., Gilchrist D., Wang H. & Chan C. (1998) H2O2 Acts On Cellular Membrane To Generate Ceramide Signalling And Initiate Apoptosis In Tracheobronchial Epithelial Cell, J. Cell Sci., 111, 3209–3220

    Google Scholar 

  55. Hiraoka W., Vazquez N., Nieves-Neira W., Chanock S.J. & Pommier Y. (1998) Role Of Oxygen Radicals Generated By Nadph Oxidase In Apoptosis Induced In Human Leukemia Cells, J. Clin. Invest., 102, 1961–1968

    Article  Google Scholar 

  56. Dumont A., Hehner S.P, Hofmann T.G, Ueffing M, Droge W. & Schmitz M.L. (1999) Hydrogen Peroxide-Induced Apoptosis Is Cd95-Independent, Requires The Release Of Mitochondria-Derived Reactive Oxygen Species And The Activation Of Nf-kB, Oncogene, 18, 754–757

    Google Scholar 

  57. Olejnicka B.T., Dalen H. & Brink U.T. (1999) Minute Oxidative Stress Is Sufficient To Induce Apoptotic Death Of Nit-1 Insulinoma Cells, Apmis, 107, 747–761

    Article  Google Scholar 

  58. Alexeevsky A., Alexeevsky D., Domnina L., Fetisova E., Ivanova O., Pletjushkina O. & Skulachev V. (In Preparation)

    Google Scholar 

  59. Neill S.J., Desikan R., Clarke A., Hurst R.D. & Hancock J.T. (2002) Hydrogen Peroxide And Nitric Oxide As Signalling Molecules In Plants, J. Exp. Bot., 53, 1237–1247

    Article  Google Scholar 

  60. Zottini M., Formentin E., Scattolin M., Carinii F., Lo Schiavo F. & Terzi M. (2002) Nitric Oxide Affects Plant Mitochondrial Functionality In Vivo, Febs Lett. 515, 75–78

    Article  Google Scholar 

  61. Patel R.P., Mcandrew J., Sellak H., White C.R., Jo H., Freeman B.A. & Darley-Usmar V.M. (1999) Biological Aspects Of Reactive Nitrogen Species, Biochim. Biophys. Acta, 1411, 385–400

    Article  Google Scholar 

  62. Borutaite V., Morkuniene R. & Brown G.C. (2000) Nitric Oxide Donors, Nitrosothiols And Mitochondrial Respiration Inhibitors Induce Caspase Activation By Different Mechanisms, Febs Lett., 467, 155–159

    Article  Google Scholar 

  63. Kashigawa A., Hanada H., Yabuki M., Kano T., Ishisaka R., Sasaki J., Inoue M. & Ursumi K. (1999) Thyroxine Enhancement And The Role Of Reactive Oxygen Species In Tadpole Tail Apoptosis, Free Radic. Biol. Med., 26, 1001–1009

    Article  Google Scholar 

  64. Poderoso J.J., Carreras M.C., Lisdero C., Riobo N., Schöpfer F. & Boveris A. (1996) Nitric Oxide Inhibits Electron Transfer And Increases Superoxide Radical Production In Rat Heart Mitochondria And Submitochondrial Particles, Arch. Biochem. Biophys., 328, 85–92

    Article  Google Scholar 

  65. Poderoso J.J., Lisdero C., Schöpfer F., Riobo N., Carreras M.C., Cadenas E. & Boveris A. (1999) The Regulation Of Mitochondrial Oxygen Uptake By Redox Reactions Involving Nitric Oxide And Ubiquinol, J. Biol. Chem., 274, 37709–37716

    Article  Google Scholar 

  66. Poderoso J.J., Peralta J.G., Lisdero C., Carreras M.C., Radisic M, Schöpfer F., Cadenas E. & Boveris A. (1998) Nitric Oxide Regulates Oxygen Uptake And Hydrogen Peroxide Release By The Isolated Beating Rat Heart, Am. J. Physiol., 274, C112–C119

    Google Scholar 

  67. Poderoso J.J., Carreras M.C., Schöpfer F., Lisdero C.L., Riobo N.A., Giulivi C., Boveris A.D., Boveris A. & Cadenas E. (1999) The Reaction Of Nitric Oxide With Ubiquinol: Kinetic Properties And Biological Significance, Free Radic. Biol. Med., 26, 925–935

    Article  Google Scholar 

  68. Skulachev V.P. (1997) Aging Is A Specific Biological Function Rather Than The Result Of A Disorder In Complex Living Systems: Biochemical Evidence In Support Of Weismann’s Hypothesis, Biochemistry (Moscow), 62, 1191–1195

    Google Scholar 

  69. Skulachev V.P. (1999) Mitochondrial Physiology And Pathology; Concept Of Programmed Death Of Organelles, Cells And Organisms, Mol. Asp. Med., 20, 139–184

    Article  Google Scholar 

  70. Skulachev V.P. (1999) Phenoptosis: Programmed Death Of An Organism, Biochemistry (Moscow), 64, 1418–1426

    Google Scholar 

  71. Walker G.C., Neidhard F.C., Curtiss R.I., Ingraham J.L., Lin C.C.L., Low K.B., Magasanik B, Reznikoff W.S., Riley M, Schaechter M. & Umbarger H.E. (1996) The Sos Response Of Escherichia Coli, In Escherichia Coli And Salmonella. Cellular And Molecular Biology,. Eds., Washington: Asm Press

    Google Scholar 

  72. Piddock L.J. & Walters R.N. (1992) Bactericidal Activities Of Five Quinolones For Escherichia Coli Strains With Mutations In Genes Encoding The Sos Response Or Cell Devision, Antimicrob. Agents Chemother, 36, 819–825

    Article  Google Scholar 

  73. Novak R., Charpentier E., Braun J.S. & Tuomanen E. (2000) Signal Transduction By A Death Signal Peptide: Uncovering The Mechanism Of Bacterial Killing By Penicillin, Mol. Cell, 5, 49–57

    Article  Google Scholar 

  74. Aizenman E., Engelberg-Kulka H. & Glaser G. (1996) An Escherichia Coli Chromosomal “Addiction Module” Regulated By Guanosine-3’5’-Bispyrophosphate: A Model For Programmed Bacterial Cell Death, Proc. Natl. Acad. Sci. Usa, 93, 6059–6063

    Article  Google Scholar 

  75. Engelberg-Kulka H. & Glaser G. (1999) Addiction Modules And Programmed Death And Anti-Death In Bacterial Cultures, Annu. Rev. Microbiol., 53, 43–70

    Article  Google Scholar 

  76. Engelberg-Kulka H., Sat B. & Hazan R. (2001) Bacterial Programmed Cell Death And Antibiotics, Asm News, 67, 617–62

    Google Scholar 

  77. Raff M.C. (1998) Cell Suicide For Beginners, Nature, 396, 119–122

    Article  Google Scholar 

  78. Bakal C.J. & Davies J.E. (2000) No Longer An Exclusive Club: Eukaryotic Signalling Domains In Bacteria, Trends Cell Biol, 10, 32–38

    Article  Google Scholar 

  79. Madeo F., Fröhlich E., Ligr M., Grey M., Sigrist S.J., Wolf D.H. & Fröhlich K-U. (1999) Oxygen Stress: A Regulator Of Apoptosis In Yeast, J. Cell Biol., 145, 757–767

    Article  Google Scholar 

  80. Ludovico P., Sousa M.J., Silva M.T., Leao C. & Corte-Real M. (2001) Saccharomyces Cerevisiae Commits To A Programmed Cell Death Process In Response To Acetic Acid, Microbiology, 147, 2409–2415

    Google Scholar 

  81. Ludovico P., Rodrigues F., Almeida A., Silva M.T., Barrientos A. & Corte-Real M. (2002) Cytochrome C Release And Mitochondria Involvement In Programmed Cell Death Induced By Acetic Acid In Saccharomyces Cerevisiae, Mol. Biol. Cell 13 (10.1091/Mbc. E01-12-1061)

    Google Scholar 

  82. Longo V.D., Ellerby L.M., Bredesen D.E., Valentine J.S. & Gralle E.B. (1997) Human Bcl-2 Reverses Survival Defects In Yeast Lacking Superoxide Dismutase And Delays Death Of Wild-Type Yeast, J. Cell. Biol., 137, 1581–1588

    Article  Google Scholar 

  83. Madeo F., Herker E., Maldener C., Wissing S., Lächelt S., Herlan M., Fehr M., Laulber K., Sigrist S.J., Wesselborg S. & Fröhlich K.-U. (2002) A Caspase-Related Protease Regulates Apoptosis In Yeast, Mol. Cell, 9, 911–917

    Article  Google Scholar 

  84. Severin F.F. & Hyman A.A. (2002) Pheromone Induces Programmed Cell Death In S. Cerevisiae, Current Biol., 12, R233–R235

    Article  Google Scholar 

  85. Skulachev V.P. (2002) Programmed Death As Adaptation? In Yeast, Probably Yes, Febs Letters. (Accepted)

    Google Scholar 

  86. Christensen S.T., Chemnitz J., Straarup E.M., Kristiansen K., Wheatley D.N. & Rasmussen M. (1998) Staurosporine-Induced Cell Death In Tetrahymena Thermophila Has Mixed Characteristics Of Both Apoptotic And Autophagic Degeneration, Cell Biol. Int., 22, 591–598

    Article  Google Scholar 

  87. Kirkwood T.B.L. & Cremer T. (1982) Cytogerontology Since 1881: A Reappraisal Of August Weismann And A Review Of Modern Progress, Hum. Genet, 60, 101–121

    Article  Google Scholar 

  88. Nesis K.N. (1997) Cruel Love Among The Squids, In Russian Science; Withstand And Revive, Byalko A.V. Ed., Moscow, Nauka-Physmatlit. (Russ.)

    Google Scholar 

  89. Bowles J.T. (1998) The Evolution Of Aging: A New Approach To An Old Problem Of Biology, Med. Hypotheses, 51, 179–221

    Article  Google Scholar 

  90. Skulachev V.P. (1999) The Dual Role Of Oxygen In Aerobic Cells, In Biosciences 2000 Pasternak CA., (Ed.), Imperial College Press, London, 173–193

    Google Scholar 

  91. Olovnikov A.M. (1971) Principles Of Marginotomy In Template Synthesis Of Polynucleotides, Dokl. Akad. Nauk Sssr, 201, 1496–1498 (Russ)

    Google Scholar 

  92. Chin L., Artandi S.E., Shen Q., Tam A., Lee S.L., Gottlieb G.J., Greider C.W. & Depinho R.A. (1999) P53 Deficiency Rescues The Adverse Effects Of Telomere Loss And Cooperates With Telomere Dysfunction To Accelerate Carcinogenesis, Cell, 97, 527–538.

    Article  Google Scholar 

  93. Rudolph K.L., Chang S., Lee H.W., Blasco M., Gottlieb G.J., Greider C. & Depinho R.A. (1999) Longevity, Stress Response, And Cancer In Aging Telomerase-Deficient Mice, Cell, 96, 701–712

    Article  Google Scholar 

  94. De Lange T. & Jacks T. (1999) For Better Or Worse? Telomerase Inhibition And Cancer, Cell, 98, 273–275

    Article  Google Scholar 

  95. Lakowski B. & Hekimi S. (1996) Determination Of Life-Span In Caenorhabditis Elegans By Four Clock Genes, Science, 272, 1010–1013

    Article  Google Scholar 

  96. Ewbank J.J., Barnes T.M., Lakowski B., Lussier M., Bussey H. & Hekimi S. (1997) Structural And Functional Conservation Of The Caenorhabditis Elegans Timing Gene Clk-1, Science, 275, 980–983

    Article  Google Scholar 

  97. Migliaccio E., Giorgio M., Mele S., Pelicci G, Revoldi P., Pandolfi P.P., Lanfrancone L. & Pelicci P.G. (1999) The P66shc Adaptor Protein Controls Oxidative Stress Response And Life Span In Mammals, Nature, 402, 309–313

    Article  Google Scholar 

  98. Skulachev V.P. (2000) The> P66shc Protein: A Mediator Of The Programmed Death Of An Organism?, Iubmb-Life, 49, 177–180

    Google Scholar 

  99. Kapahi P, Boulton M.E. & Kirkwood T.B.L. (1999) Positive Correlation Between Mammalian Life Span And Cellular Resistance To Stress, Free Radic. Biol. Med., 26, 495–500

    Article  Google Scholar 

  100. Tyner S.D., Venkatachalam S., Choi J., Jones S., Ghebranious N., Igelmann H., Lu X., Soron G., Cooper B., Brayton C., Hee Park S., Thompson T., Karsenty G., Bradley A. & Donehower L.A. (2002) P53 Mutant Mice That Display Early Ageing-Associated Phenotypes, Nature, 415, 45–53

    Article  Google Scholar 

  101. Wahl G.M. & Carr A.M. (2001) The Evolution Of Diverse Biological Responses To Dna Damage: Insights From Yeast And P53, Nature Cell Biol, 3, E277–E286

    Article  Google Scholar 

  102. Hardy K & Stark J. (2002) Matematical Models Of The Balance Between Apoptosis And Proliferation, Apoptosis, 7, 373–381

    Article  Google Scholar 

  103. Akif’ev A.P. & Potapenko A.I. (2001) Nuclear Genetic Material As An Initial Substrate Of Aging In Animals, Genetika, 37, 1145–1458 (Russ.)

    Google Scholar 

  104. Metchnikoff I. (1907) The Prolongation Of Life: Optimistic Studies. Heinemann: London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Skulachev, V.P. (2003). Programmed Death Phenomena at Various Levels of Development of the Living Systems. In: Nation, J., Trofimova, I., Rand, J.D., Sulis, W. (eds) Formal Descriptions of Developing Systems. NATO Science Series, vol 121. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0064-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0064-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1568-7

  • Online ISBN: 978-94-010-0064-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics