Skip to main content
Log in

Application of the Eco-field and General Theory of Resources to Bark Beetles: Beyond the Niche Construction Theory

  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

A new approach to landscape ecology involves the application of the eco-field hypothesis and the General Theory of Resources. In this study, we describe the putative eco-field of bark beetles as a spatial configuration with a specific meaning-carrier for every organism-resource interaction. Bark beetles are insects with key roles in matter and energy cycles in coniferous forests, which cause significant changes to forestry landscapes when outbreaks occur. Bark beetles are guided towards host trees by the recognition of semiotic signals using a specific eco-field. These signals mainly comprise a group of scents, which are called the odourtope. Their interactions with other organisms (fungi, bacteria, nematodes, predators, etc.) occur by sharing relevant information from the eco-field networks (representamen networks) in the forest ecosystem. The eco-field networks modulate the expansion of the realized semiotic niche of the bark beetle towards the potential semiotic niche. Moreover, the niche construction process can be initiated by interchanging signals among species living in the same place, where these signals allow the exploitation of the required resources. If different organisms are interdependent on signals in eco-field networks, then this process may result in the establishment of mutualistic relationships. This is an example of how evolutionary processes are initiated by the recognition of signals in a network of eco-fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, A. S., Aylward, F. O., Adams, S. M., Erbilgin, N., Aukema, B. H., Currie, C. R., Suen, G., & Raffa, K. F. (2013). Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied and Environmental Microbiology, 79(11), 3468–3475. doi:10.1128/AEM.00068-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, M. N. (2012). Mechanisms of odor coding in coniferous bark beetles: from neuron to behavior and application. Psyche: A Journal of Entomology, 2012, e149572. doi:10.1155/2012/149572.

    Google Scholar 

  • Ayres, B. D., Ayres, M. P., Abrahamson, M. D., & Teale, S. A. (2001). Resource partitioning and overlap in three sympatric species of Ips bark beetles (Coleoptera: Scolytidae). Oecologia, 128(3), 443–453. doi:10.1007/s004420100665.

    Article  PubMed  Google Scholar 

  • Barbieri, M. (2009). A short history of biosemiotics. Biosemiotics, 2(2), 221–245. doi:10.1007/s12304-009-9042-8.

    Article  Google Scholar 

  • Barker, G., & Odling-Smee, J. (2014). Integrating ecology and evolution: niche construction and ecological engineering. In G. Barker, E. Desjardins, & T. Pearce (Eds.), Entangled Life (pp. 187–211). Springer: Netherlands. doi:10.1007/978-94-007-7067-610.

    Chapter  Google Scholar 

  • Ben Jamaa, M. L., Lieutier, F., Yart, A., Jerraya, A., & Khouja, M. L. (2007). The virulence of phytopathogenic fungi associated with the bark beetles Tomicus piniperda and Orthotomicus erosus in Tunisia. Forest Pathology, 37(1), 51–63. doi:10.1111/j.1439-0329.2007.00478.x.

    Article  Google Scholar 

  • Bezos, D., Martínez-Álvarez, P., Diez, J. J., & Fernández, M. M. (2015). The pine shoot beetle Tomicus piniperda as a plausible vector of Fusarium circinatum in northern Spain. Annals of Forest Science, 72(8), 1079–1088. doi:10.1007/s13595-015-0515-4.

    Article  Google Scholar 

  • Boone, C. K., Six, D. L., Zheng, Y., & Raffa, K. F. (2008). Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environmental Entomology, 37(1), 150–161. doi:10.1093/ee/37.1.150.

    Article  PubMed  Google Scholar 

  • Boone, C. K., Keefover-Ring, K., Mapes, A. C., Adams, A. S., Bohlmann, J., & Raffa, K. F. (2013). Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. Journal of Chemical Ecology, 39(7), 1003–1006. doi:10.1007/s10886-013-0313-0.

    Article  CAS  PubMed  Google Scholar 

  • Bordenstein, S. R., & Theis, K. R. (2015). Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biology, 13(8), e1002226. doi:10.1371/journal.pbio.1002226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruni, L. E. (2011). The multitrophic Plant–Herbivore–Parasitoid–Pathogen system: a biosemiotic perspective. In C. Emmeche & K. Kull (Eds.), Towards a Semiotic Biology (pp. 143–166). London: Imperial College Press.

    Chapter  Google Scholar 

  • Byers, J. A. (2012). Bark Beetles, Pityogenes bidentatus, orienting to aggregation pheromone avoid conifer monoterpene odors when flying but not when walking. Psyche: A Journal of Entomology, 2012, e940962. doi:10.1155/2012/940962.

    Google Scholar 

  • Byers, J. A., & Zhang, Q. (2011). Chemical ecology of bark beetles in regard to search and selection of host trees. In T. Liu & L. Kang (Eds.), Recent Advances in Entomological Research (pp. 150–190). Berlin: Springer. doi:10.1007/978-3-642-17815-3_9.

    Chapter  Google Scholar 

  • Campbell, S. A., & Borden, J. H. (2006a). Close-range, in-flight integration of olfactory and visual information by a host-seeking bark beetle. Entomologia Experimentalis et Applicata, 120(2), 91–98. doi:10.1111/j.1570-7458.2006.00425.x.

    Article  Google Scholar 

  • Campbell, S. A., & Borden, J. H. (2006b). Integration of visual and olfactory cues of hosts and non-hosts by three bark beetles (Coleoptera: Scolytidae). Ecological Entomology, 31(5), 437–449. doi:10.1111/j.1365-2311.2006.00809.x.

    Article  Google Scholar 

  • Chen, H.-F., Salcedo, C., & Sun, J.-H. (2012). Male mate choice by chemical cues leads to higher reproductive success in a bark beetle. Animal Behaviour, 83(2), 421–427. doi:10.1016/j.anbehav.2011.11.012.

    Article  Google Scholar 

  • Chiu, L., & Gilbert, S. F. (2015). The birth of the holobiont: multi-species birthing through mutual scaffolding and niche construction. Biosemiotics, 8(2), 191–210. doi:10.1007/s12304-015-9232-5.

    Article  Google Scholar 

  • Costa, A., & Reeve, J. D. (2011a). Upwind flight response of the bark beetle predator Thanasimus dubius towards olfactory and visual cues in a wind tunnel. Agricultural and Forest Entomology, 13(3), 283–290. doi:10.1111/j.1461-9563.2011.00519.x.

    Article  Google Scholar 

  • Costa, A., & Reeve, J. D. (2011b). Olfactory experience modifies semiochemical responses in a bark beetle predator. Journal of Chemical Ecology, 37(11), 1166–1176. doi:10.1007/s10886-011-0027-0.

    Article  CAS  PubMed  Google Scholar 

  • Dicke, M., & Sabelis, M. W. (1988). Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Functional Ecology, 2, 131–139.

    Article  Google Scholar 

  • El-Hani, C. N., Arnellos, A., & Queiroza, J. (2007). Modeling a semiotic process in the immune system: signal transduction in B-cells activation. tripleC, 5(2), 24–36.

    Google Scholar 

  • Elton, C. (1927). Animal ecology. New York: The Macmillian Company.

    Google Scholar 

  • Faccoli, M., Anfora, G., & Tasin, M. (2008). Responses of the Mediterranean pine shoot beetle Tomicus destruens (Wollaston) to pine shoot and bark volatiles. Journal of Chemical Ecology, 34(9), 1162–1169. doi:10.1007/s10886-008-9503-6.

    Article  CAS  PubMed  Google Scholar 

  • Farina, A. (2008). The landscape as a semiotic interface between organisms and resources. Biosemiotics, 1(1), 75–83. doi:10.1007/s12304-008-9006-4.

    Article  Google Scholar 

  • Farina, A. (2010). The Cognitive Landscape. In S. R. Todd, T. J. Hawbaker, & J. P. Metzger (Eds.), Ecology, cognition and landscape: linking natural and social systems (Vol. 11) (pp. 103–138). Dordrecht: Springer Science & Business Media.

    Google Scholar 

  • Farina, A. (2012). A biosemiotic perspective of the resource criterion: toward a General Theory of Resources. Biosemiotics, 5(1), 17–32. doi:10.1007/s12304-008-9006-4.

    Article  Google Scholar 

  • Farina, A. (2014). Soundscape and landscape ecology. In Soundscape Ecology. Principles, Patterns, Methods and Applications (pp. 1–28). Dordrecht: Springer. doi:10.1007/978-94-007-7374-5.

  • Farina, A., & Belgrano, A. (2004). The eco-field: a new paradigm for landscape ecology. Ecological Research, 19(1), 107–110. doi:10.1111/j.1440-1703.2003.00613.x.

    Article  Google Scholar 

  • Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: toward a cognitive landscape. Landscape Ecology, 21(1), 5–17. doi:10.1007/s10980-005-7755-x.

    Article  Google Scholar 

  • Farina, A., & Napoletano, B. (2010). Rethinking the landscape: new theoretical perspectives for a powerful agency. Biosemiotics, 3(2), 177–187. doi:10.1007/s12304-010-9086-9.

    Article  Google Scholar 

  • Farina, A., & Pieretti, N. (2013). From umwelt to soundtope: an epistemological essay on cognitive ecology. Biosemiotics, 7(1), 1–10. doi:10.1007/s12304-013-9191-7.

    Article  Google Scholar 

  • Farina, A., & Pieretti, N. (2014). Acoustic codes in action in a soundscape context. Biosemiotics, 7(2), 321–328. doi:10.1007/s12304-014-9213-0.

    Article  Google Scholar 

  • Farina, A., Santolini, R., Pagliaro, G., Scozzafava, S., & Schipani, I. (2005). Eco-semiotics: A new field of competence for ecology to overcome the frontier between environmental complexity and human culture in the Mediterranean. Israel Journal of Plant Sciences, 53(3-4), 167–175. doi:10.1560/5UTK-YW53-KDQT-YU48.

    Article  Google Scholar 

  • Farina, A., Lattanzi, E., Malavasi, R., Pieretti, N., & Piccioli, L. (2011). Avian soundscapes and cognitive landscapes: theory, application and ecological perspectives. Landscape Ecology, 26(9), 1257–1267. doi:10.1007/s10980-011-9617-z.

    Article  Google Scholar 

  • Farina, A., Pieretti, N., & Malavasi, R. (2014). Patterns and dynamics of (bird) soundscapes: A biosemiotic interpretation. Semiotica, 2014(198), 241–255. doi:10.1515/sem-2013-0109.

    Article  Google Scholar 

  • Favareau, D. (2009). Concepts of molecular biosemiotics. In M. Barbieri & J. Hoffmeyer (Eds.), Essential Readings in Biosemiotics (3rd ed., pp. 463–500). Netherlands: Springer. doi:10.1007/978-1-4020-9650-1_15.

    Chapter  Google Scholar 

  • Filotas, E., Parrott, L., Burton, P. J., Chazdon, R. L., Coates, K. D., Coll, L., Haeussier, S., Martin, K., Nocentini, S., Puettmann, K. J., Putz, F. E., Simard, S. W., & Messier, C. (2014). Viewing forests through the lens of complex systems science. Ecosphere, 5(1), 1–23. doi:10.1890/ES13-00182.1.

    Article  Google Scholar 

  • Fleming, A. J., Lindeman, A. A., Carroll, A. L., & Yack, J. E. (2013). Acoustics of the mountain pine beetle (Dendroctonus ponderosae) (Curculionidae, Scolytinae): sonic, ultrasonic, and vibration characteristics. Canadian Journal of Zoology, 91(4), 235–244. doi:10.1139/cjz-2012-0239.

    Article  Google Scholar 

  • Florkin, M. (1974). Concepts of molecular biosemiotics and molecular evolution. In A. M. Florkin & E. H. Stotz (Eds.), Comprehensive Biochemistry (29th ed., pp. 1–124). Amsterdam: Elsevier.

    Google Scholar 

  • Gallego, D., Cánovas, F., Esteve, M. A., & Galián, J. (2004). Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in Spain. Journal of Biogeography, 31(12), 2011–2024. doi:10.1111/j.1365-2699.2004.01131.x.

    Article  Google Scholar 

  • Gallego, D., Galián, J., Diez, J. J., & Pajares, J. A. (2008). Kairomonal responses of Tomicus destruens (Col., Scolytidae) to host volatiles α-pinene and ethanol. Journal of Applied Entomology, 132(8), 654–662. doi:10.1111/j.1439-0418.2008.01304.x.

    Article  CAS  Google Scholar 

  • Gitau, C. W., Bashford, R., Carnegie, A. J., & Gurr, G. M. (2013). A review of semiochemicals associated with bark beetle (Coleoptera: Curculionidae: Scolytinae) pests of coniferous trees: A focus on beetle interactions with other pests and their associates. Forest Ecology and Management, 297, 1–14. doi:10.1016/j.foreco.2013.02.019.

    Article  Google Scholar 

  • Goodsman, D. W., Erbilgin, N., & Lieffers, V. J. (2012). The Impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Environmental Entomology, 41(3), 478–486. doi:10.1603/EN11205.

    Article  PubMed  Google Scholar 

  • Grinnell, J. (1924). Geography and evolution. Ecology, 5(3), 225–229. doi:10.2307/1929447.

    Article  Google Scholar 

  • Guerrero, A., Feixas, J., Pajares, J., Wadhams, L. J., Pickett, J. A., & Woodcock, C. M. (1997). Semiochemically induced inhibition of behaviour of Tomicus destruens (Woll.) (Coleoptera: Scolytidae). Naturwissenschaften, 84(4), 155–157. doi:10.1007/s001140050369.

    Article  CAS  Google Scholar 

  • Hoffmeyer, J. (2008). The semiotic niche. Journal of Mediterranean Ecology, 9, 5–30.

    Google Scholar 

  • Hofstetter, R. W., & Moser, J. C. (2014). The role of mites in insect-fungus associations. Annual Review of Entomology, 59(1), 537–557. doi:10.1146/annurev-ento-011613-162039.

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson, G. E. (1957). The multivariate niche. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–421.

    Article  Google Scholar 

  • Kelsey, R. G., Gallego, D., Sánchez-García, F. J., & Pajares, J. A. (2014). Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian Journal of Forest Research, 44(6), 554–561. doi:10.1139/cjfr-2013-0428.

    Article  CAS  Google Scholar 

  • Kerdelhué, C., Roux-Morabito, G., Forichon, J., Chambon, J.-M., Robert, A., & Lieutier, F. (2002). Population genetic structure of Tomicus piniperda L. (Coleoptera: Scolytidae) and validation of T. destruens (Woll.). Molecular Ecology, 11(3), 483–494.

    Article  PubMed  Google Scholar 

  • Kolosova, N., & Bohlmann, J. (2012). Conifer defense against insects and fungal pathogens. In R. Matyssek, H. Schnyder, W. Oßwald, D. Ernst, J. C. Munch, & H. Pretzsch (Eds.), Growth and Defence in Plants (pp. 85–109). Berlin: Springer. doi:10.1007/978-3-642-30645-7_4.

    Chapter  Google Scholar 

  • Kull, K. (2010). Ecosystems are made of semiosic bonds: consortia, umwelten, biophony and ecological codes. Biosemiotics, 3(3), 347–357. doi:10.1007/s12304-010-9081-1.

    Article  Google Scholar 

  • Laland, K., Uller, T., Feldman, M., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., Odling-Smee, J., Wray, G. A., Hoekstra, H. E., Futuyma, D. J., Lenski, R. E., Mackay, T. F. C., Schluter, D., & Strassmann, J. E. (2014). Does evolutionary theory need a rethink? Nature, 514(7521), 161–164. doi:10.1038/514161a.

    Article  CAS  PubMed  Google Scholar 

  • Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. Proceedings of the Royal Society B, 282(1813), 20151019. doi:10.1098/rspb.2015.1019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindeman, A. A., & Yack, J. E. (2015). What is the password? Female bark beetles (Scolytinae) grant males access to their galleries based on courtship song. Behavioural Processes, 115, 123–131. doi:10.1016/j.beproc.2015.03.009.

    Article  PubMed  Google Scholar 

  • Lu, M., Miller, D. R., & Sun, J.-H. (2007). Cross-attraction between an exotic and a native pine bark beetle: a novel invasion mechanism? PLoS ONE, 2(12), e1302. doi:10.1371/journal.pone.0001302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, M., Wingfield, M. J., Gillette, N. E., Mori, S. R., & Sun, J.-H. (2010). Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytologist, 187(3), 859–866. doi:10.1111/j.1469-8137.2010.03316.x.

    Article  PubMed  Google Scholar 

  • Lu, R. C., Wang, H. B., Zhang, Z., Byers, J. A., Jin, Y. J., Wen, H. F., & Shi, W. J. (2012). Coexistence and competition between Tomicus yunnanensis and T. minor (Coleoptera: Scolytinae) in Yunnan Pine. Psyche: A Journal of Entomology, 2012, e185312. doi:10.1155/2012/185312.

    Google Scholar 

  • Machingambi, N. M., Roux, J., Dreyer, L. L., & Roets, F. (2014). Bark and ambrosia beetles (Curculionidae: Scolytinae), their phoretic mites (Acari) and associated Geosmithia species (Ascomycota: Hypocreales) from Virgilia trees in South Africa. Fungal Biology, 118(5), 472–483. doi:10.1016/j.funbio.2014.03.006.

    Article  PubMed  Google Scholar 

  • Malavasi, R., Kull, K., & Farina, A. (2014). The acoustic codes: how animal sign processes create sound-topes and consortia via conflict avoidance. Biosemiotics, 7(1), 89–95. doi:10.1007/s12304-013-9177-5.

    Article  Google Scholar 

  • Maran, T. (2012). Are ecological codes archetypal structures? In T. Maran, K. Lindström, R. Magnus, & M. Tønnessen (Eds.), Semiotics in the Wild. Essays in Honour of Kalevi Kull on the Occasion of His 60th Birthday (pp. 147–156). Tartu: Tartu University Press.

    Google Scholar 

  • Maran, T., & Kull, K. (2014). Ecosemiotics: main principles and current developments. Geografiska Annaler: Series B, Human Geography, 96(1), 41–50. doi:10.1111/geob.12035.

    Article  Google Scholar 

  • Matthews, B., De Meester, L., Jones, C. G., Ibelings, B. W., Bouma, T. J., Nuutinen, V., van de Koppel, J., & Odling-Smee, J. (2014). Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecological Monographs, 84(2), 245–263. doi:10.1890/13-0953.1.

    Article  Google Scholar 

  • Miller, D. R., Gibson, K. E., Raffa, K. F., Seybold, S. J., Teale, S. A., & Wood, D. L. (1997). Geographic variation in response of pine engraver, Ips pini, and associated species to pheromone, lanierone. Journal of Chemical Ecology, 23(8), 2013–2031. doi:10.1023/B:JOEC.0000006486.39056.48.

    Article  CAS  Google Scholar 

  • Nielsen, S. N. (2007). Towards an ecosystem semiotics: some basic aspects for a new research programme. Ecological Complexity, 4(3), 93–101. doi:10.1016/j.ecocom.2007.04.001.

    Article  Google Scholar 

  • Nöth, W., & Kull, K. (2001). Introduction: special issue on semiotics of nature. Σημειωτκή - Sign Systems Studies, 1, 9–11.

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche Construction, The Neglected Process in Evolution (MPB-37). Princeton: Princeton University Press.

    Google Scholar 

  • Pasteels, J. M. (1982). Is kairomone a valid and useful term? Journal of Chemical Ecology, 8(7), 1079–1081.

    Article  CAS  PubMed  Google Scholar 

  • Patten, B. C. (1978). Systems approach to the concept of environment. The Ohio Journal of Science., 78(4), 206–222.

    Google Scholar 

  • Pérez, L., Dragićević, S., & White, R. (2013). Model testing and assessment: perspectives from a swarm intelligence, agent-based model of forest insect infestations. Computers, Environment and Urban Systems, 39, 121–135. doi:10.1016/j.compenvurbsys.2012.10.004.

    Article  Google Scholar 

  • Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological Niches and Geographic Distributions (MPB-49). Princeton: Princeton University Press.

    Google Scholar 

  • Peverieri, G. S., Capretti, P., & Tiberi, R. (2006). Associations between Tomicus destruens and Leptographium spp. in Pinus pinea and P. pinaster stands in Tuscany, central Italy. Forest Pathology, 36(1), 14–20. doi:10.1111/j.1439-0329.2006.00427.x.

    Article  Google Scholar 

  • Pizzolotto, R. (2009). Characterization of different habitats on the basis of the species traits and eco-field approach. Acta Oecologica, 35(1), 142–148. doi:10.1016/j.actao.2008.09.004.

    Article  Google Scholar 

  • Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3(4), 349–361. doi:10.1046/j.1461-0248.2000.00143.x.

    Article  Google Scholar 

  • Raffa, K. F., Hobson, K. R., LaFontaine, S., & Aukema, B. H. (2007). Can chemical communication be cryptic? Adaptations by herbivores to natural enemies exploiting prey semiochemistry. Oecologia, 153(4), 1009–1019. doi:10.1007/s00442-007-0786-z.

    Article  PubMed  Google Scholar 

  • Reeve, J. D., Strom, B. L., Rieske, L. K., Ayres, B. D., & Costa, A. (2009). Geographic variation in prey preference in bark beetle predators. Ecological Entomology, 34(2), 183–192. doi:10.1111/j.1365-2311.2008.01055.x.

    Article  Google Scholar 

  • Romón, P., Iturrondobeitia, J. C., Gibson, K., Lindgren, B. S., & Goldarazena, A. (2007). Quantitative association of bark beetles with pitch canker fungus and effects of verbenone on their semiochemical communication in monterey pine forests in northern Spain. Environmental Entomology, 36(4), 743–750. doi:10.1093/ee/36.4.743.

    Article  PubMed  Google Scholar 

  • Sabbatini-Peverieri, G., Faggi, M., Marziali, L., Panzavolta, T., Bonuomo, L., & Tiberi, R. (2004). Use of attractant and repellent substances to control Tomicus destruens (Coleoptera: Scolytidae) in Pinus pinea and P. pinaster pine forests of Tuscany. Entomologica, 38, 91–102.

    Google Scholar 

  • Sebeok, T. A. (2001). Biosemiotics: its roots, proliferation, and prospects. Semiotica, 2001(134), 61–78. doi:10.1515/semi.2001.014.

    Article  Google Scholar 

  • Seybold, S. J., Huber, D. P. W., Lee, J. C., Graves, A. D., & Bohlmann, J. (2006). Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews, 5(1), 143–178. doi:10.1007/s11101-006-9002-8.

    Article  CAS  Google Scholar 

  • Silva, X., Terhonen, E., Sun, H., Kasanen, R., Heliövaara, K., Jalkanen, R., & Asiegbu, F. O. (2015). Comparative analyses of fungal biota carried by the pine shoot beetle (Tomicus piniperda L.) in northern and southern Finland. Scandinavian Journal of Forest Research, 30(6), 497–506. doi:10.1080/02827581.2015.1031824.

    Article  Google Scholar 

  • Six, D. L. (2012). Ecological and evolutionary determinants of bark beetle —fungus symbioses. Insects, 3(1), 339–366. doi:10.3390/insects3010339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Six, D. L. (2013). The bark beetle holobiont: why microbes matter. Journal of Chemical Ecology, 39(7), 989–1002. doi:10.1007/s10886-013-0318-8.

    Article  CAS  PubMed  Google Scholar 

  • Sorberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10. doi:10.17161/bi.v2i0.4.

    Google Scholar 

  • Sõukand, R., & Kalle, R. (2010). Plant as object within herbal landscape: different kinds of perception. Biosemiotics, 3(3), 299–313. doi:10.1007/s12304-010-9078-9.

    Article  Google Scholar 

  • Strom, B. L., & Goyer, R. A. (2001). Effect of silhouette color on trap catches of Dendroctonus frontalis (Coleoptera: Scolytidae). Annals of the Entomological Society of America, 94(6), 948–953.

    Article  Google Scholar 

  • Sun, J., Lu, M., Gillette, N. E., & Wingfield, M. J. (2013). Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annual Review of Entomology, 58(1), 293–311. doi:10.1146/annurev-ento-120811-153624.

    Article  CAS  PubMed  Google Scholar 

  • Susoy, V., & Herrmann, M. (2014). Preferential host switching and codivergence shaped radiation of bark beetle symbionts, nematodes of Micoletzkya (Nematoda: Diplogastridae). Journal of Evolutionary Biology, 27(5), 889–898. doi:10.1111/jeb.12367.

    Article  CAS  PubMed  Google Scholar 

  • Uexküll, J. (1926). Theoretical Biology. New York: Harcourt, Brace & Co.

    Google Scholar 

  • Vasechko, G. I. (1978). Host selection by some bark beetles (Col., Scolytidae). Zeitschrift für Angewandte Entomologie, 85(1-4), 141–153.

    Article  Google Scholar 

  • Vega, F. E., & Hofstetter, R. W. (2014). Bark Beetles: Biology and Ecology of Native and Invasive Species. Academic Press.

  • Xiaoyi, W., & Zhongqi, Y. (2008). Behavioral mechanisms of parasitic wasps for searching concealed insect hosts. Acta Ecologica Sinica, 28(3), 1257–1269. doi:10.1016/S1872-2032(08)60039-6.

    Article  Google Scholar 

  • Xu, L., Lou, Q., Cheng, C., Lu, M., & Sun, J. (2015). Gut-associated bacteria of Dendroctonus valens and their Involvement in verbenone production. Microbial Ecology, 70(4), 1012–1023. doi:10.1007/s00248-015-0625-4.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L. H., & Gratton, C. (2014). Insects as drivers of ecosystem processes. Current Opinion in Insect Science, 2, 26–32. doi:10.1016/j.cois.2014.06.004.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Projects 12023/PI/09 and 19908/GERM/15 from the Fundación Séneca of the Region of Murcia government. The authors thank A. López-López, International Science Editing and anonymous referee for critically reading and improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Sánchez-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-García, F.J., Machado, V., Galián, J. et al. Application of the Eco-field and General Theory of Resources to Bark Beetles: Beyond the Niche Construction Theory. Biosemiotics 10, 57–73 (2017). https://doi.org/10.1007/s12304-016-9283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-016-9283-2

Keywords

Navigation