Skip to main content
Log in

A Modal Interpretation of Quantum Mechanics Based on a Principle of Entropy Minimization

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Within many approaches to the interpretation of quantum mechanics, especially modal interpretations, one singles out a particular decomposition of the state vector in order to fix the properties that are well-defined for the system. We present a novel proposal for this preferred decomposition. Given a distinguished factorization of the Hilbert space, it is the decomposition that minimizes the Ingarden–Urbanik entropy from among all product decompositions with respect to the distinguished factorization. We incorporate this choice of preferred decomposition into a framework for modal interpretations and investigate in detail the extent to which it provides a solution to the measurement problem and the extent to which it ensures that measurements whose outcomes are predictable with probability 1 reveal pre-existing properties of the system under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bub, Interpreting the Quantum World (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  2. D. Deutsch,”Quantum theory as a universal physical theory,” Int. J. Theor. Phys. 24, 1 (1985).

  3. W. H. Zurek, “Preferred states, predictability, classicality and the environment-induced decoherence,” Prog. Theor. Phys. 89, 281 (1993).

    Google Scholar 

  4. A. Kent and J. McElwaine, “Quantum prediction algorithms,” Phys. Rev. A 55, 1703 (1997).

    Google Scholar 

  5. D. Dieks and P. Vermaas, eds., The Modal Interpretation of Quantum Mechanics (Kluwer Academic, Boston, 1998).

    Google Scholar 

  6. R. Healey and G. Hellman, eds., Quantum Measurement: Beyond Paradox (University of Minnesota Press, Minneapolis, 1997).

    Google Scholar 

  7. R. W. Spekkens and J. E. Sipe, “Non-orthogonal preferred projectors for modal interpretations of quantum mechanics,” Found. Phys. 31(10) (2001).

  8. J. Bub and R. Clifton, “A Uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics,” Stud. Hist. Phil. Mod. Phys. 27, 181 (1996).

    Google Scholar 

  9. D. Bohm and B. J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory (Routledge, London, 1993).

    Google Scholar 

  10. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1993), Chap. 19.

    Google Scholar 

  11. S. Kochen, “A new interpretation of quantum mechanics,” in Symposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985), p. 151.

    Google Scholar 

  12. D. Dieks, “The formalism of quantum theory: An objective description of reality?” Ann. Phys. 7, 174 (1988).

    Google Scholar 

  13. R. Healey, The Philosophy of Quantum Mechanics (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  14. A. Elby and J. Bub, “The triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics,” Phys. Rev. A 49, 4213 (1994).

    Google Scholar 

  15. R. Clifton, “The triorthogonal uniqueness theorem and its irrelevance to the modal interpretation of quantum mechanics,” in Symposium on the Foundations of Modern Physics 1994—70 Years of Matter Waves, K. V. Laurikainen et al., eds. (Editions Frontières, Paris, 1995), p. 45.

    Google Scholar 

  16. P. Vermaas and D. Dieks, “The modal interpretation of quantum mechanics and its generalization to density operators,” Found. Phys. 25, 145 (1995).

    Google Scholar 

  17. G. Bacciagaluppi and M. Dickson, “Dynamics for modal interpretations,” Found. Phys. 29, 1165 (1999).

    Google Scholar 

  18. D. Dieks, “Preferred factorizations and consistent property attribution,” in Healey and Hellman,(6) p. 144.

  19. P. E. Vermaas, “A no-go theorem for joint property ascriptions in modal interpretations of quantum mechanics,” Phys. Rev. Lett. 78, 2033 (1997).

    Google Scholar 

  20. G. Bacciagaluppi, M. J. Donald, and P. E. Vermaas, “Continuity and discontinuity of definite properties in the modal interpretation,” Helv. Phys. Acta 68, 679 (1995).

    Google Scholar 

  21. G. Bacciagaluppi and M. Hemmo, “Modal interpretations, decoherence and measurements,” Stud. Hist. Phil. Mod. Phys. 27B, 239 (1996).

    Google Scholar 

  22. P. Vermaas, “The pros and cons of the Kochen–Dieks and the atomic modal interpretation,” in Dieks and Vermaas,(5) p. 103.

  23. G. Bacciagaluppi and M. Hemmo, “State preparation in the modal interpretation,” in Healey and Hellman,(6) p. 95.

  24. G. Bacciagaluppi, “Kochen–Specker tfheorem in the modal interpretation of quantum mechanics,” Int. J. Theor. Phys. 34, 1205 (1995).

    Google Scholar 

  25. R. S. Ingarden and K. Urbanik, “Quantum informational thermodynamics,” Acta Phys. Pol. 21, 281 (1962).

    Google Scholar 

  26. A. Peres, “Higher-order Schmidt decompositions,” Phys. Lett A 202, 16 (1995).

    Google Scholar 

  27. J. Vink, “Quantum mechanics in terms of discrete beables,” Phys. Rev. A 48, 1808 (1993).

    Google Scholar 

  28. D. Z. Albert, Quantum Mechanics and Experience (Harvard University Press, Cambridge, 1992).

    Google Scholar 

  29. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, 1995).

  30. R. Omnès, The Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1994), pp. 306–309.

    Google Scholar 

  31. L. P. Hughston, R. Jozsa, and W. K. Wootters, “A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 14 (1993).

    Google Scholar 

  32. R. Bhatia, Matrix Analysis (Springer, New York, 1997).

    Google Scholar 

  33. M. A. Nielsen, “Conditions for a class of entanglement transformations,” Phys. Rev. Lett. 83, 436 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spekkens, R.W., Sipe, J.E. A Modal Interpretation of Quantum Mechanics Based on a Principle of Entropy Minimization. Foundations of Physics 31, 1431–1464 (2001). https://doi.org/10.1023/A:1012630429527

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012630429527

Keywords

Navigation