Skip to main content
Log in

Is Minkowski Space-Time Compatible with Quantum Mechanics?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In quantum relativistic Hamiltonian dynamics, the time evolution of interacting particles is described by the Hamiltonian with an interaction-dependent term (potential energy). Boost operators are responsible for (Lorentz) transformations of observables between different moving inertial frames of reference. Relativistic invariance requires that interaction-dependent terms (potential boosts) are present also in the boost operators and therefore Lorentz transformations depend on the interaction acting in the system. This fact is ignored in special relativity, which postulates the universality of Lorentz transformations and their independence of interactions. Taking into account potential boosts in Lorentz transformations allows us to resolve the “no-interaction” paradox formulated by Currie, Jordan, and Sudarshan [Rev. Mod. Phys. 35, 350 (1963)] and to predict a number of potentially observable effects contradicting special relativity. In particular, we demonstrate that the longitudinal electric field (Coulomb potential) of a moving charge propagates instantaneously. We show that this effect as well as superluminal spreading of localized particle states is in full agreement with causality in all inertial frames of reference. Formulas relating time and position of events in interacting systems reduce to the usual Lorentz transformations only in the classical limit (ħ→0) and for weak interactions. Therefore, the concept of Minkowski space-time is just an approximation which should be avoided in rigorous theoretical constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. V. Stefanovich, “Quantum field theory without infinities,” Ann. Phys. (N.Y.) 292, 139 (2001).

    Google Scholar 

  2. D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, “Relativistic invariance and Hamiltonian theories of interacting particles,” Rev. Mod. Phys. 35, 350 (1963).

    Google Scholar 

  3. I. T. Todorov, “Dynamics of relativistic point particles as a problem with constraints,” JINR Preprint E2-10125 (1976). S. N. Sokolov, “Mechanics with retarded interactions,” IHEP Preprint 97–84, Protvino (1997). W. N. Polyzou, “Manifestly covariant, Poincaré invariant quantum theories of directly interacting particles,” Phys. Rev. D 32, 995 (1985).

    Google Scholar 

  4. S. Weinberg, “The quantum theory of massless particles,” in Lectures on Particles and Field Theory, Vol. 2 (Prentice-Hall, Englewood Cliffs, NJ, 1964), p. 406; The Quantum Theory of Fields, Vol. 1 (University Press, Cambridge, 1995).

    Google Scholar 

  5. S. M. W. Ahmad and E. P. Wigner, “Invariant theoretic derivation of the connection between momentum and velocity,” Nuovo Cimento A 28, 1 (1975). T. F. Jordan, “Identification of the velocity operator for an irreducible unitary representation of the Poincaré group,” J. Math. Phys. 18, 608 (1977).

    Google Scholar 

  6. M. H. L. Pryce, “The mass-centre in the restricted theory of relativity and its connexion with the quantum theory of elementary particles,” Proc. R. Soc. London, Ser. A 195, 62 (1948). T. D. Newton and E. P. Wigner, “Localized states for elementary systems,” Rev. Mod. Phys. 21, 400 (1949). R. A. Berg, “Position and intrinsic spin operators in quantum theory,” J. Math. Phys. 6, 34 (1965); T. F. Jordan, “simple derivation of the Newton– Wigner position operator,” J. Math. Phys. 21, 2028 (1980).

    Google Scholar 

  7. E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Ann. Math. 40, 149 (1939).

    Google Scholar 

  8. R. Fong and E. G. P. Rowe, “The bra-ket formalism for relativistic particles,” Ann. Phys. (N.Y.) 46, 559 (1968).

    Google Scholar 

  9. P. A. M. Dirac, “Forms of relativistic dynamics,” Rev. Mod. Phys. 21, 392 (1949).

    Google Scholar 

  10. B. Bakamjian and L. H. Thomas, “Relativistic particle dynamics. II,” Phys. Rev. 92, 1300 (1953). E. Kazes, “Analytic theory of relativistic interactions,” Phys. Rev. D 4, 999 (1971). L. L. Foldy and R. A. Krajcik, "separable solutions for directly interacting particle systems,' Phys. Rev. D 12, 1700 (1975).

    Google Scholar 

  11. O. W. Greenberg and S. S. Schweber, “Clothed particle operators in simple models of quantum field theory,” Nuovo Cimento 8, 378 (1958). A. V. Shebeko and M. I. Shirokov, “Unitary transformations in quantum field theory and bound states,” Fiz. Elem. Chastits At. Yadra 32, 31 (2001). [English translation in Phys. Part. Nucl. 32, 15 (2001)].

    Google Scholar 

  12. A. V. Shebeko and M. I. Shirokov, “Relativistic quantum field theory (RQFT) treatment of few-body systems,” Nucl. Phys. A 631, 564c (1998).

    Google Scholar 

  13. E. V. Stefanovich, “Quantum effects in relativistic decays,” Int. J. Theor. Phys. 35, 2539 (1996).

    Google Scholar 

  14. W. Brenig and R. Haag, “General quantum theory of collision processes,” Fortschr. Phys. 7, 183 (1959). [English translation in Quantum Scattering Theory, M. Ross, ed. (Indiana University Press, Bloomington, 1963), p. 13].

    Google Scholar 

  15. A. H. Monahan and M. McMillan, “Lorentz boost of the Newton–Wigner-Pryce position operator,” Phys. Rev. A, 2563 56 (1997).

    Google Scholar 

  16. G. C. Hegerfeldt, “Remark on causality and particle localization,” Phys. Rev. D 10, 3320 (1974). “Instantaneous spreading and Einstein causality in quantum theory,” Ann. Phys. (Leipzig) 7, 716 (1998). S. N. M. Ruijsenaars, “On Newton–Wigner localization and superluminal propagation speeds,” Ann. Phys. (N.Y.) 137, 33 (1981). J. Mourad, "spacetime events and relativistic particle localization,' LANL Archives e-print gr-qc/9310018 (1993). B. D. Keister and W. N. Polyzou, “Causality in dense matter,” Phys. Rev. C 54, 2023 (1996).

    Google Scholar 

  17. Th. W. Ruijgrok, “On localisation in relativistic quantum mechanics,” in Theoretical Physics, Fin de Siécle, A. Borowiec, W. Cegle, B. Jancewicz, and W. Karwowski, eds., Lecture Notes in Physics, 539 (Springer-Verlag, Berlin, 2000), p. 52.

    Google Scholar 

  18. W. N. Polyzou, “Relativistic two-body models,” Ann. Phys. (N.Y.) 193, 367 (1989). F. M. Lev. “Relativistic quantum mechanics and its applications to few-nucleon systems,” Riv. Nuovo Cimento 16, 1 (1993).

    Google Scholar 

  19. T. Alväger, F. J. M. Farley, J. Kjellman, and I. Wallin, “Test of the second postulate of special relativity in the GeV region,” Phys. Lett. 12, 260 (1964). W. S. N. Trimmer, R. F. Baierlein, J. E. Faller, and H. A. Hill, “Experimental search for anisotropy in the speed of light,” Phys. Rev. D 8, 3321 (1973). D. Newman, G. W. Ford, A. Rich, and E. Sweetman, “Precision experimental verification of special relativity,” Phys. Rev. Lett. 40, 1355 (1978). A. Brillet and J. L. Hall, “Improved laser test of the isotropy of space,” Phys. Rev. Lett. 42, 549 (1979). H. B. Nielsen and I. Picek, “The Rédei-like model and testing Lorentz invariance,” Phys. Lett. B 114, 141 (1982). D. W. MacArthur, "special relativity: Understanding experimental tests and formulations,' Phys. Rev. A 33, 1 (1986). M. Kaivola, O. Poulsen, E. Riis, and S. A. Lee, “Measurement of the relativistic Doppler shift in neon,” Phys. Rev. Lett. 54, 255 (1985). R. Grieser, R. Klein, G. Huber, S. Dickopf, I. Klaft, P. Knobloch, P. Merz, F. Albrecht, D. Habs, D. Schwalm, and T. Kühl, “A test of special relativity with stored lithium ions,” CERN Preprint CERN-PPE/93-216 (1993).

    Google Scholar 

  20. T. Van Flandern, “The speed of gravity–What the experiments say,” Phys. Lett A 250, 1 (1998); “Reply to comment on: “The speed of gravity,” Phys. Lett A 262, 261 (1999).

    Google Scholar 

  21. A. E. Chubykalo and S. J. Vlaev, “Necessity of simultaneous co-existence of instantaneous and retarded interactions in classical electrodynamics,” Int. J. Mod. Phys. A 14, 3789 (1999). M. Ibison, H. E. Puthoff, and S. R. Little, “The speed of gravity revisited,” LANL Archives e-print physics/9910050 (1999). G. E. Marsch and C. Nissim-Sabat, Comment on “The speed of gravity,” Phys. Lett. A 262, 257 (1999). S. Carlip, “Aberration and the speed of gravity,” Phys. Lett. A 267, 81 (2000).

    Google Scholar 

  22. G. C. Giakos and T. K. Ishii, “Rapid pulsed microwave propagation,” IEEE Microwave and Guided Wave Letters 1, 374 (1991). A. Enders and G. Nimtz, J. Phys. I France 2, 1693 (1992); A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the singlephoton tunneling time,” Phys. Rev. Lett. 71, 708 (1993); J. J. Carey, J. Zawadzka, D. A. Jaroszynski, and K. Wynne, “Noncausal time response in frustrated total internal reflection?” Phys. Rev. Lett. 84, 1431 (2000). A. Haché and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518 (2002).

    Google Scholar 

  23. R. I. Tzontchev, A. E. Chubykalo, and J. M. Rivera-Juárez, “Coulomb interaction does not spread instantaneously,” Hadronic J. 23, 401 (2000). R. I. Tzontchev, A. E. Chubykalo, and J. M. Rivera-Juárez, “Addendum to Coulomb interaction does not spread instantaneously,” Hadronic J. 24, 253 (2001).

    Google Scholar 

  24. W. D. Walker, “Experimental evidence of near-field superluminally propagating electromagnetic fields,” LANL Archives e-print physics/0009023 (2000).

  25. D. S. Ayres, A. M. Cormack, A. J. Greenberg, R. W. Kenney, D. O. Cladwell, V. B. Elings, W. P. Hesse, and R. J. Morrison, “Measurements of the lifetime of positive and negative pions,” Phys. Rev. D 3, 1051 (1971). J. Bailey, K. Borer, F. Combley, H. Drumm, F. Kreinen, F. Lange, E. Picasso, W. von Ruden, F. J. M. Farley, J. H. Field, W. Flegel, and P. M. Hattersley, “Measurements of relativistic time dilation for positive and negative muons on a circular orbit,” Nature 268, 301 (1977). F. J. M. Farley, “The CERN (g-2) measurements,” Z. Phys. C 56, S88 (1992).

    Google Scholar 

  26. I. V. Polubarinov, “On a coordinate operator in quantum field theory,” JINR Preprint P2-8371, Dubna (1974). M. I. Shirokov, “Causality in quantum electrodynamics,” Yad. Fiz. 23, 1133 (1976). [English translation in Sov. J. Nucl. Phys. 23 (1976), 599]; “Fermion localization and causality,” Nuovo Cimento A 105, 1565 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanovich, E.V. Is Minkowski Space-Time Compatible with Quantum Mechanics?. Foundations of Physics 32, 673–703 (2002). https://doi.org/10.1023/A:1016052825257

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016052825257

Navigation