Skip to main content
Log in

Aspects of the Quantum-Classical Connection Based on Statistical Maps

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Based on three different types of affine mappings between the corresponding convex sets of states, three different kinds of relations between quantum mechanics and classical physics are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The sharp effects are given by the extreme points of \( {\mathcal {E}}({\mathcal {H}})\), i.e., by the orthogonal projections. The other effects are called unsharp.—To the author’s knowledge, the terms “sharp” and “unsharp” for effects and observables were introduced by Paul Busch.

  2. The classical sharp effects are the extreme points of \( {\mathcal {E}}(\varOmega ,\varSigma )\), i.e., the characteristic functions \( \chi _B \), \( B \in \varSigma \).

  3. A set \( M \subseteq {\mathcal {E}}({\mathcal {H}})\) of effects is called coexistent if the effects of M can be measured jointly or, formally, if M is contained in the range of some observable. Two effects \( F,G \in {\mathcal {E}}({\mathcal {H}})\) are coexistent in this sense if and only if there exist effects \( F',G',H \in {\mathcal {E}}({\mathcal {H}})\) such that \( F = F' + H \), \( G = G' + H \), and \( F' + G' + H \le I \). Two sharp effects, i.e., orthogonal projections F and G, are coexistent if and only if they commute. The set M is called pairwise coexistent if any two effects of M are coexistent. Pairwise coexistence of M does not imply coexistence of M, an example is given in [14]. However, for a set of sharp effects the two concepts are equivalent. This follows, for instance, from von Neumann’s theorem that, for any set N of commuting self-adjoint operators acting in a separable Hilbert space, there exists a self-adjoint operator A such that every \( C \in N \) is of the form \( C = f(A) \) with some Borel function f.

    The definitions of coexistence and pairwise coexistence transfer literally to classical effects. Any two classical effects are coexistent, so the set \( {\mathcal {E}}(\varOmega ,\varSigma )\) of all classical effects is pairwise coexistent. In addition, any set of finitely many classical effects is coexistent [3]. Moreover, the set of all sharp classical effects is coexistent. In fact, \( A \mapsto \chi _A \), \( A \in \varSigma \), is a sharp classical observable; this observable corresponds to the random variable \( \omega \mapsto \omega \), \( \omega \in \varOmega \).

References

  1. Bugajski, S.: Fundamentals of fuzzy probability theory. Int. J. Theor. Phys. 35, 2229–2244 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bugajski, S., Hellwig, K.-E., Stulpe, W.: On fuzzy random variables and statistical maps. Rep. Math. Phys. 41, 1–11 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gudder, S.: Fuzzy probability theory. Demonstr. Math. 31, 235–254 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Ali, S.T., Prugovečki, E.: Systems of imprimitivity and representations of quantum mechanics on fuzzy phase spaces. J. Math. Phys. 18, 219–228 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ali, S.T., Prugovečki, E.: Classical and quantum statistical mechanics in a common Liouville space. Physica 89A, 501–521 (1977)

    ADS  MathSciNet  Google Scholar 

  6. Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime. Reidel, Dordrecht (1984)

    Book  MATH  Google Scholar 

  7. Singer, M., Stulpe, W.: Phase-space representations of general statistical physical theories. J. Math. Phys. 33, 131–142 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Stulpe, W.: On the representation of quantum mechanics on phase space. Int. J. Theor. Phys. 31, 1785–1795 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Stulpe, W.: Some remarks on classical representations of quantum mechanics. Found. Phys. 24, 1089–1094 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Stulpe, W.: On the representation of quantum mechanics on a classical sample space. Int. J. Theor. Phys. 37, 349–356 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Busch, P., Hellwig, K.-E., Stulpe, W.: On classical representations of finite-dimensional quantum mechanics. Int. J. Theor. Phys. 32, 399–405 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hellwig, K.-E., Stulpe, W.: A classical reformulation of finite-dimensional quantum mechanics. In: Busch, P., Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics 1993, pp. 209–214. World Scientific, Singapore (1993)

    Google Scholar 

  13. Stulpe, W.: Classical Representations of Quantum Mechanics Related to Statistically Complete Observables. Wissenschaft und Technik Verlag Berlin, Berlin (1997). arXiv:quant-ph/0610122

  14. Stulpe, W.: From the attempt of certain classical reformulations of quantum mechanics to quasi-probability representations. J. Math. Phys. (2014). https://doi.org/10.1063/1.4861939

  15. Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Lecture Notes in Physics No. m31, Springer, Berlin (1995, corrected printing 1997)

  16. Busch, P.: Less (precision) is more (information): quantum information in terms of quantum statistical models. In: Khrennikov, A. (ed.) Quantum Theory: Reconsideration of Foundations—2, Proceedings of the International Conference Vaxjo, 2003, pp. 113–128. Vaxjo University Press (2004). arXiv:quant-ph/0401027v2

  17. Busch, P.: Quantum mechanics as a framework for dealing with uncertainty. Phys. Scr. (2010). https://doi.org/10.1088/0031-8949/2010/T140/014003

  18. Ferrie, C., Morris, R., Emerson, J.: Necessity of negativity in quantum theory. Phys. Rev. A. (2010). https://doi.org/10.1103/PhysRevA.82.044103

  19. Schroeck Jr., F.E.: The transitions among classical mechanics, quantum mechanics, and stochastic quantum mechanics. Found. Phys. 12, 825–841 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. Guz, W.: Foundations of phase-space quantum mechanics. Int. J. Theor. Phys. 23, 157–184 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Werner, R.: Quantum harmonic analysis on phase space. J. Math. Phys. 25, 1404–1411 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum Measurement. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  23. Misra, B.: On a new definition of quantal states. In: Enz, C.P., Mehra, J. (eds.) Physical Reality and Mathematical Description, pp. 455–476. Reidel, Dordrecht (1974)

    Chapter  Google Scholar 

  24. Ghirardi, G.-C., Rimini, A., Weber, T.: Reformulation and a possible modification of quantum-mechanics and EPR paradox. Nuovo Cim. 36B, 97–118 (1976)

    Article  ADS  Google Scholar 

  25. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  26. Beltrametti, E.G., Bugajski, S.: A classical extension of quantum mechanics. J. Phys. A Math. Gen. 28, 3329–3343 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Beltrametti, E.G., Bugajski, S.: Quantum observables in classical frameworks. Int. J. Theor. Phys. 34, 1221–1229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stulpe, W., Swat, M.: Quantum states as probability measures. Found. Phys. Lett. 14, 285–293 (2001)

    Article  MathSciNet  Google Scholar 

  29. Stulpe, W., Busch, P.: The structure of classical extensions of quantum probability theory. J. Math. Phys. (2008). https://doi.org/10.1063/1.2884581

  30. Neumann, H.: Macroscopic properties of photon quantum fields. In: Busch, P., Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics 1993, pp. 303–308. World Scientific, Singapore (1993)

    Google Scholar 

  31. Enderle, M., Neumann, H.: Embedding of the classical into the quantum description of photons. Found. Phys. 24, 1415–1424 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  32. Busch, P., Lahti, P.: The determination of the past and the future of a physical system in quantum mechanics. Found. Phys. 19, 633–678 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  33. Busch, P., Quadt, R.: Concepts of coarse graining in quantum mechanics. Int. J. Theor. Phys. 32, 2261–2269 (1993)

    Article  MathSciNet  Google Scholar 

  34. Quadt, R., Busch, P.: Coarse graining and the quantum-classical connection. Open Syst. Inf. Dyn. 2, 129–155 (1994)

    Article  MATH  Google Scholar 

  35. Hellwig, K.-E.: Quantum measurements and information theory. Int. J. Theor. Phys. 32, 2401–2411 (1993)

    Article  MathSciNet  Google Scholar 

  36. Filippov, S.N., Man’ko, V.I.: Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics. J. Russ. Laser Res. 31, 211–231 (2010)

    Article  Google Scholar 

  37. Busch, P., Cassinelli, G., Lahti, P.: Probability structures for quantum state spaces. Rev. Math. Phys. 7, 1105–1121 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976)

    MATH  Google Scholar 

  39. Busch, P., Lahti, P.: On various joint measurements for position and momentum in quantum mechanics. Phys. Rev. D 29, 1634–1646 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  40. Busch, P.: Indeterminacy relations and simultaneous measurements in quantum theory. Int. J. Theor. Phys. 24, 63–92 (1985)

    Article  MathSciNet  Google Scholar 

  41. Kiukas, J., Lahti, P., Schultz, J., Werner, R.F.: Characterization of informational completeness for covariant phase space observables. J. Math. Phys. (2012). https://doi.org/10.1063/1.4754278

  42. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  MATH  Google Scholar 

  43. Wigner, E.P.: Quantum mechanical distribution functions revisited. In: Yourgrau, W., van der Merwe, A. (eds.) Perspectives in Quantum Theory, pp. 25–36. MIT Press, Cambridge (1971)

    Google Scholar 

  44. Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Phys. 46, 1–46 (1927)

    Article  ADS  MATH  Google Scholar 

  45. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publishing Company, New York (1950)

    MATH  Google Scholar 

  46. Pool, J.C.T.: Mathematical aspects of the Weyl correspondence. J. Math. Phys. 7, 66–77 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Busch, P.: Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33, 2253–2261 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  48. Busch, P.: Some realizable joint measurements of complementary observables. Found. Phys. 17, 905–937 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  49. Busch, P., Schroeck Jr., F.E.: On the reality of spin and helicity. Found. Phys. 19, 807–872 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  50. Bugajski, S.: Topologies on pure quantum states. Phys. Lett. A 190, 5–8 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Ma, Z.-H., Zhu, S.: Intrinsic structure of state space of a quantum system. J. Math. Phys. (2011). https://doi.org/10.1063/1.3559133

  52. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, London (1981)

    MATH  Google Scholar 

  53. Bugajski, S.: Nonlinear quantum mechanics is a classical theory. Int. J. Theor. Phys. 30, 961–971 (1991)

    Article  Google Scholar 

  54. Bugajski, S.: Delinearization of quantum logic. Int. J. Theor. Phys. 32, 389–398 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  55. Bugajski, S.: Classical frames for a quantum theory–a bird’s-eye view. Int. J. Theor. Phys. 32, 969–977 (1993)

    Article  MathSciNet  Google Scholar 

  56. Bugajski, S.: On classical representations of convex descriptions. Z. Naturforsch. 48a, 469–470 (1993)

    ADS  MATH  Google Scholar 

  57. Günther, C.: Prequantum bundles and projective Hilbert geometries. Int. J. Theor. Phys. 16, 447–464 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kibble, T.W.B.: Geometrization of quantum mechanics. Commun. Math. Phys. 65, 189–201 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Cirelli, R., Lanzavecchia, P.: Hamiltonian vector fields in quantum mechanics. Nuovo Cim. 79B, 271–283 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  60. Cirelli, R., Mania, A., Pizzocchero, L.: Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure. Parts I and II. J. Math. Phys. 31, 2891–2897, 2898–2903 (1990)

  61. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19–53 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Bjelaković, I., Stulpe, W.: The projective Hilbert space as a classical phase space for nonrelativistic quantum dynamics. Int. J. Theor. Phys. 44, 2041–2049 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, Vol. 1: Derivation of Hilbert Space Structure. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  64. Ludwig, G.: An Axiomatic Basis for Quantum Mechanics, Vol. 2: Quantum Mechanics and Macrosystems. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  65. Ludwig, G.: The minimal interpretation of quantum mechanics and the objective description of macrosystems. In: Busch, P., Lahti, P., Mittelstaedt, P. (eds.) Symposium on the Foundations of Modern Physics 1993, pp. 242–250. World Scientific, Singapore (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Stulpe.

Additional information

Dedicated to the memory of Paul Busch, a distinguished scholar and a great human being.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stulpe, W. Aspects of the Quantum-Classical Connection Based on Statistical Maps. Found Phys 49, 677–692 (2019). https://doi.org/10.1007/s10701-019-00269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00269-9

Keywords

Mathematics Subject Classification

Navigation