Skip to main content
Log in

The chemist’s concept of molecular structure

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

The concept of molecular structure is fundamental to the practice and understanding of chemistry, but the meaning of this term has evolved and is still evolving. The Born–Oppenheimer separation of electronic and nuclear motions lies at the heart of most modern quantum chemical models of molecular structure. While this separation introduces a great computational and practical simplification, it is neither essential to the conceptual formulation of molecular structure nor universally valid. Going beyond the Born–Oppenheimer approximation introduces new paradigms, bringing fresh insight into the chemistry of fluxional molecules, proteins, superconductors and macroscopic dielectrics, thus opening up new avenues for exploration. But it requires that our ideas of molecular structure need to evolve beyond simple ball-and-stick-type models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Brown (2003a, b) has argued that molecular structure models should be seen as metaphors that reflect our conceptualization of chemistry and the manifestation of subconscious forms of understanding in the process of scientific reasoning.

  2. Structure can be quantified by structure factors, inter-particle distribution functions or pair correlation functions. Thus the two-particle density is given by:

    $$ \gamma ({\text{r}},\text{r}^{\prime}) = \int {{\text{dr}}_{3} \int {{\text{dr}}_{4} \ldots \int {{\text{dr}}_{\text{N}} \Uppsi *({\text{r}},\text{r}^{\prime},{\text{r}}_{3} ,{\text{r}}_{4} , \ldots {\text{r}}_{\text{N}} ) \Uppsi ({\text{r}}_{3} ,{\text{r}}_{4} , \ldots {\text{r}}_{\text{N}} )} } } $$

    where ψ(r, r′, r3, r4, … rN) is the quantum wave function as a function of the coordinates of all particles in the system, ψ* its complex conjugate and the integrals run over the coordinates of all particles but two. The two-particle density can further be integrated over angular coordinates to give the radial distribution function, a function of a single distance. See Fig. 2 for illustrative examples.

References

  • Ackeroyd, M.: Explanation of the atomic theory 1865–1895. International Society for the Philosophy of Chemistry Summer Symposium, Knoxville, TN (2005)

  • Agrafiotis, D.K., Bandyopadhyay, D., et al.: Recent advances in cheminformatics. J. Chem. Inf. Model 47(4), 1279–1293 (2007)

    Article  Google Scholar 

  • Bader, R.F.W.: Quantum topology of molecular charge distributions. III. The mechanics of an atom in a molecule. J. Chem. Phys. 73(6), 2871–2883 (1980)

    Article  Google Scholar 

  • Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Clarendon, Oxford (1990)

    Google Scholar 

  • Bader, R.F.W.: A quantum theory of molecular structure and its applications. Chem. Rev. 91(5), 893–928 (1991)

    Article  Google Scholar 

  • Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Clarendon, Oxford (1995)

    Google Scholar 

  • Bader, R.F.W.: 1997 Polanyi award lecture. Why are there atoms in chemistry? Can. J. Chem. 76(7), 973–988 (1998a)

    Article  Google Scholar 

  • Bader, R.F.W.: A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102(37), 7314–7323 (1998b)

    Article  Google Scholar 

  • Bader, R.F.W., Srebrenik, S., et al.: Subspace quantum dynamics and the quantum action principle. J. Chem. Phys. 68(8), 3580–3591 (1978)

    Article  Google Scholar 

  • Bader, R.F.W., Anderson, S.G., et al.: Quantum topology of molecular charge distributions 1. J. Am. Chem. Soc. 101(6), 1389–1395 (1979a)

    Article  Google Scholar 

  • Bader, R.F.W., Nguyen-Dang, T.T., et al.: Quantum topology of molecular charge distributions. II. Molecular structure and its change. J. Chem. Phys. 70, 4316–4329 (1979b)

    Article  Google Scholar 

  • Bader, R.F.W., Nguyen-Dang, T.T., et al.: A topological theory of molecular structure. Rep. Prog. Phys. 44, 893–948 (1981)

    Article  Google Scholar 

  • Bader, R.F.W., Popelier, P.L.A., et al.: Theoretical definition of a functional group and the molecular orbital paradigm. Angew. Chem. Int. Ed. Engl. 33, 620–631 (1994)

    Article  Google Scholar 

  • Batista, J., Bajorath, J.: Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations. J. Chem. Inf. Model 47, 59–68 (2007)

    Article  Google Scholar 

  • Bender, A., Jenkins, J.L., et al.: Molecular similarity: advances in methods, applications, and validations in virtual screening and QSAR. Ann. Rep. Comp. Chem. 2, 141–168 (2006)

    Article  Google Scholar 

  • Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)

    Article  Google Scholar 

  • Born, M.: Zur Quantentheorie der Molekeln. Nachr. Akad. Goettingen. Math. Physik. Kl. 6, 1 (1951)

  • Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1954)

    Google Scholar 

  • Born, M., Oppenheimer, J.R.: Kopplung der Elektronen- und Kernbewegung in Molekeln und Kristallen. Ann. Phys. 84, 457 (1927)

    Google Scholar 

  • Breneman, C.M., Sundling, C.M., et al.: New developments in PEST shape/property hybrid descriptors. J. Comput. Aided Mol. Des. 17, 231–240 (2003)

    Article  Google Scholar 

  • Brown, T.L.: Making Truth: Metaphor in Science. University Illinois Press, Urbana (2003a)

    Google Scholar 

  • Brown, T.L.: The metaphorical foundations of chemical explanation. Ann. NY Acad. Sci. 988, 209–216 (2003b)

    Google Scholar 

  • Carbo-Dorca, R., Robert, D., et al.: Molecular Quantum Similarity in QSAR and Drug Design. Springer-Verlag, Berlin (2000)

    Google Scholar 

  • Coulson, C.A.: Tilden Lecture. The Chemical Society, Burlington House (1951)

    Google Scholar 

  • Coulson, C.A.: The contributions of wave mechanics to chemistry. J. Chem. Soc. 2069–2084 (1955). doi: 10.1039/JR9550002069

  • Delacretaz, G., Grant, E.R., et al.: Fractional quantization of molecular pseudorotation in Na3. Phys. Rev. Lett. 56, 2598–2601 (1986)

    Article  Google Scholar 

  • Early, J.E.: Why there is no salt in the sea. Found. Chem. 7, 85–102 (2005)

    Article  Google Scholar 

  • Eberhart, M.: Quantum mechanics and molecular design in the twenty-first century. Found. Chem. 4, 201–211 (2002)

    Article  Google Scholar 

  • Essén, H.: The physics of the Born-Oppenheimer approximation. Int. J. Quantum Chem. 12, 721–735 (1977)

    Article  Google Scholar 

  • Essén, H.: Kinematic and dynamic partitionings of the energy: coordinate and other transformations. In: Hinze, J. (ed.) Energy Storage and Redistribution in Molecules, pp. 327. Plenum, New York (1983)

  • Giere, R.N.: No representation without representation. Biol. Philos. 9, 113–120 (1994)

    Article  Google Scholar 

  • Gonze, X., Ghosez, P., et al.: Density functional theory of polar insulators. Phys. Rev. Lett. 78(2), 294–297 (1997)

    Article  Google Scholar 

  • Hansch, C., Muir, R.M., et al.: The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients. J. Am. Chem. Soc. 85, 2817–2824 (1963)

    Article  Google Scholar 

  • Herzberg, G., Longuet-Higgins, H.C.: Intersection of potential energy surfaces in polyatomic molecules. Discuss. Faraday Soc. 35, 77–82 (1963)

    Article  Google Scholar 

  • Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  Google Scholar 

  • Hoshino, M., Nakai, H.: Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory: application of Møller-Plesset perturbation theory. J. Chem. Phys. 124, 194110 (2006)

    Article  Google Scholar 

  • Konarski, J.: Diatomic molecule as a soft body. J. Mol. Spectrosc. 124(1), 218–228 (1987)

    Article  Google Scholar 

  • Konarski, J.: Rovibrational states of a linear molecule. J. Mol. Struct. 270, 491–498 (1992)

    Article  Google Scholar 

  • Konarski, J.: A new model of a molecule based on the soft body. Int. J. Quantum Chem. 51, 439–445 (1994)

    Article  Google Scholar 

  • Lakoff, G.: The contemporary theory of metaphor. In: Metaphor and thought. A. Cambridge University Press, Ortony, Cambridge (1993)

    Google Scholar 

  • Lathouwers, L., VanLeuven, P.: Molecular spectra and the generator coordinate method. Int. J. Quantum Chem. 12S, 371–375 (1978)

    Google Scholar 

  • Lathouwers, L., VanLeuven, P., et al.: Quantum theory and molecular spectra. Chem. Phys. Lett. 52(3), 439–441 (1977)

    Article  Google Scholar 

  • Longuet-Higgins, H.C.: The intersection of potential energy surfaces in polyatomic molecules. Proc. Roy. Soc. Lond. A 344, 147 (1975)

    Article  Google Scholar 

  • Löwdin, P.-O.: On nuclear motion and the definition of molecular structure. J. Mol. Struct. (THEOCHEM) 230, 13–15 (1991)

    Article  Google Scholar 

  • Martin, R.M.: Functional theory of extended Coulomb systems. Phys. Rev. B 56(3), 1124–1140 (1997)

    Article  Google Scholar 

  • Matta, C., Boyd, R.J. (eds.): The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  • Mead, C.A., Truhlar, D.G.: On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70, 2284–2296 (1979)

    Article  Google Scholar 

  • Mezei, M.: A novel fingerprint for the characterization of protein folds. Protein Eng. 16, 713–715 (2003)

    Article  Google Scholar 

  • Nakai, H.: Simultaneous determination of nuclear and electronic wave functions without Born–Oppenheimer approximation: Ab initio NO + MO/HF theory. Int. J. Quantum Chem. 86, 511–517 (2002)

    Article  Google Scholar 

  • Nakai, H., Hoshino, M., et al.: Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. J. Chem. Phys. 122, 164101 (2005)

    Article  Google Scholar 

  • Ortiz, G., Martin, R.M.: Macroscopic polarization as a geometric quantum phase: many-body formalism. Phys. Rev. B 49(20), 14202–14210 (1994)

    Article  Google Scholar 

  • Ostrovsky, V.: Towards a philosophy of approximations in the ‘exact’ sciences. HYLE 11(2), 101–126 (2005)

    Google Scholar 

  • Reiher, M.: The systems-theoretical view of chemical concepts. Found. Chem. 5, 147–163 (2003)

    Article  Google Scholar 

  • Resta, R.: Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66(3), 899–915 (1994)

    Article  Google Scholar 

  • Resta, R.: Quantum-mechanical position operator in extended systems. Phys. Rev. Lett. 80, 1800–1803 (1998)

    Article  Google Scholar 

  • Schonbrun, J., Dill, K.A.: Fast protein folding kinetics. Proc. Natl. Acad. Sci. U.S.A. 100(22), 12678–12682 (2003)

    Article  Google Scholar 

  • Schwinger, J.: The theory of quantized fields. I. Phys. Rev. 82, 914 (1951)

    Article  Google Scholar 

  • Shahbazian, S., Zahedi, M.: The role of observables and non-observables in chemistry: a critique of chemical language. Found. Chem. 8, 37–52 (2006)

    Article  Google Scholar 

  • Shapere, A., Wilczek, F.: Geometric Phases in Physics. World Scientific, Singapore (1989)

    Google Scholar 

  • Sims, G.E., Kim, S.H.: A method for evaluating the structural quality of protein models by using higher-order ϕ–ψ pairs scoring. Proc. Natl. Acad. Sci. U.S.A. 102(12), 618–621 (2005)

    Article  Google Scholar 

  • Smith, C.S.: A Search for Structure. MIT Press, Cambridge (1981)

    Google Scholar 

  • Stein, R.L.: A process theory of enzyme catalytic power—the interplay of science and metaphysics. Found. Chem. 8, 3–29 (2006)

    Article  Google Scholar 

  • Sukumar, N.: Born Couplings in H +2 , H2 and H3. Chemistry. Stony Brook, State University of Stony Brook. Ph. D (1984)

  • Sukumar, N.: Density functional theory for Jahn–Teller systems. Int. J. Quantum Chem. 52, 809–816 (1994)

    Article  Google Scholar 

  • Sukumar, N.: Density functional theory of Born couplings. Int. J. Quantum Chem. 56, 423–432 (1995)

    Article  Google Scholar 

  • Sukumar, N., Breneman, C.M.: QTAIM in drug discovery. In: Matta, C., Boyd, D. (eds.) Quantum Theory of Atoms in Molecules. Wiley-VCH, Weinheim (2006)

  • Sutcliffe, B.T.: The chemical bond and molecular structure. J. Mol. Struct. (THEOCHEM) 259, 29–58 (1992)

    Article  Google Scholar 

  • Thomas, I.L.: Protonic structure of molecules. I. Ammonia molecules. Phys. Rev. 185, 90 (1969)

    Article  Google Scholar 

  • Thomas, I.L.: Selection rules and the protonic spectrum of molecules. Phys. Rev. A 2, 72 (1970a)

    Article  Google Scholar 

  • Thomas, I.L.: Stark and Zeeman effects on the protonic structure of molecules. Phys. Rev. A 2, 1675 (1970b)

    Article  Google Scholar 

  • Thomas, I.L.: Vibrational and rotational energy levels as protonic structure in molecules. Phys. Rev. A 3, 565 (1971)

    Article  Google Scholar 

  • Thomas, I.L.: Photoprotonic effect in hydrides. Phys. Rev. A 5, 1972 (1972)

    Google Scholar 

  • Thomas, I.L., Joy, H.W.: Protonic structure of molecules. II. Methodology, center-of-mass transformation and the structure of methane, ammonia and water. Phys. Rev. A 2, 1200 (1970)

    Article  Google Scholar 

  • Trindle, C.: The quantum mechanical view of molecular structure and the shapes of molecules. Isr. J. Chem. 19, 47–53 (1980)

    Google Scholar 

  • Woolley, R.G.: Quantum theory and molecular structure. Adv. Phys. 25, 27–52 (1976)

    Article  Google Scholar 

  • Woolley, R.G.: Further remarks on molecular structure in quantum theory. Chem. Phys. Lett. 55, 443–446 (1978a)

    Article  Google Scholar 

  • Woolley, R.G.: Must a molecule have a shape? J. Am. Chem. Soc. 100, 1073–1078 (1978b)

    Article  Google Scholar 

  • Woolley, R.G.: Quantum mechanical aspects of the molecular structure hypothesis. Isr. J. Chem. 19, 30–46 (1980)

    Google Scholar 

  • Woolley, R.G., Sutcliffe, B.T.: Molecular structure and the Born–Oppenheimer approximation. Chem. Phys. Lett. 45(2), 393–398 (1977)

    Article  Google Scholar 

  • Zauhar, R., Moyna, G., et al.: Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem. 46, 5674–5690 (2003)

    Article  Google Scholar 

  • Zeidler, P.: The epistemological status of theoretical models of molecular structure. HYLE 6(1), 17–34 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sukumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukumar, N. The chemist’s concept of molecular structure. Found Chem 11, 7–20 (2009). https://doi.org/10.1007/s10698-008-9060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-008-9060-7

Keywords

Navigation