Skip to main content
Log in

Natural Code of Subjective Experience

  • Original Research
  • Published:
Biosemiotics Aims and scope Submit manuscript

A Correction to this article was published on 14 December 2022

This article has been updated

Abstract

The paper introduces mathematical encoding for subjective experience and meaning in natural cognition. The code is based on a quantum-theoretic qubit structure supplementing classical bit with circular dimension, functioning as a process-causal template for representation of contexts relative to the basis decision. The qubit state space is demarcated in categories of emotional experience of animals and humans. Features of the resulting spherical map align with major theoreties in cognitive and emotion science, modeling of natural language, and semiotics, suggesting several generalizations and improvements. The developed model bridges psychological, quantum-theoretic, and semiotic perspectives, allowing for an integrative account of subjectivity, agency, and meaning in living Nature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

Notes

  1. These two domains are separated by so-called Heisenberg’s cut (Jaeger, 2017) seen as unique feature of subjectivity (Ceylan et al., 2017; Dennett, 2001), agency (Matsuno, 2020; Salthe, 2014), and life in general (Auletta, 2005; Pattee, 1995; Kauffman and Gare, 2015). This boundary is what defines the quantum - an autonomous individual agent (Morf, 2018; Kawade, 2009). Via psycho-physiological parallelism (Surov et al., 2021), it goes through both descriptions, ignoring the division between body and mind (Atmanspacher, 1997).

  2. Irrelevance of the phase dimension for finding decision probabilities holds only for a single-context case. The qubit state representation, in contrast, specializes at multiple-context setups, which is always the case in its physical and cognitive-behavioral use. Typical cognitive task, for example, is making of familiar decision in a novel context never encountered before. This is done by recognizing - making sense of - the latter as superposition of two qubit states representing contexts already known; the resulting decision probabilities then depend on the phases of the superposed qubits (Surov, 2021a) analogous to interference of several wavefunctions in physics. This interference of decision probabilities - possibly seen as a macroscopic quantum phenomenon - extends Boolean logic of classical rationality (Khrennikov, 2009b), being one of the main advantages of the quantum approach to cognitive-behavioral modeling (Busemeyer et al., 2011; Khrennikov, 2015).

  3. Six-stage structure shown in Fig. 2(a) in observed in the word2vec model of natural language encoding English words and phrases in 300-dimensional vectors, obtained by learning a neural network on a large corpus of natural language texts (Surov, 2021c). This 300-dimensional space is shown to contain a two-dimensional subspace corresponding to the azimuthal plane of the Bloch sphere. In projection to this plane, words belonging to six process-semantic stages form distinct clusters in the vertices of a regular hexagon as prescribed by scheme in Fig. 2(a).

  4. Experimentally, this map is observed by the method mentioned in “Process-Semantic Stages” section. Namely, the emotional terms are projected from 300-dimensional word2vec space to the qubit’s azimuthal XY plane defined by non-emotional process-semantic prototypes. The resulting disposition of terms in a three-sector phase circle confirms the described model (Surov, 2021b).

  5. Alternative model represents evaluation, potency, and activity as spherical coordinates in a four-dimensional hypersphere (Sokolov & Boucsein, 2000; Vartanov & Vartanova, 2018).

  6. Interest, surprise, fear, anger, distress, disgust, contempt, enjoyment, and shame-humiliation (Tomkins, 1981; Tomkins & Mccarter, 1964). In agreement with the process-semantic model, these primary affects are differentiated in their neurophysiological dynamics: the first three (Novelty stage) are activating, the next three (Action) maintain activity at high level, while the last triple (Result) is inhibitory in nature (ibid.).

  7. R. Thom reintroduced actuality, potentiality and collapse (analog of catastrophe) in his own terminology. Unfortunately, he did not relate them to quantum theory that he was familiar with, which probably resulted in the qualitative character of semiophysics.

  8. Recent models of semantic relations between words (Galofaro et al., 2018; Surov et al., 2021) go beyond objectified conception of meaning.

  9. Further account of inert matter and the corresponding Shannon’s information (Auletta, 2016), attained by reduction of subjective dimension transforming the qubit to bit, makes the model all-encompassing.

References

  • Adams, B., & Petruccione, F. (2020). Quantum effects in the brain: A review. AVS Quantum Science, 2(2), 022901.

    Article  Google Scholar 

  • Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53(5), 314–348.

    Article  Google Scholar 

  • Aerts, D., Arguėlles, J.A., Beltran, L., Beltran, L., Distrito, I., de Bianchi, M.S., Sozzo, S., & Veloz, T. (2018). Towards a quantum World Wide Web. Theoretical Computer Science, 1, 1–16.

    Article  Google Scholar 

  • Aerts, D., Broekaert, J., & Gabora, L. (2000). Intrinsic contextuality as the crux of consciousness. In K. Yasue (Ed.) Fundamental approaches to consciousness. Tokyo: John Benjamins Publishing Company.

  • Aerts, D., Broekaert, J., Gabora, L., & Sozzo, S. (2016). Quantum structures in cognitive and social science. Frontiers in Psychology, 7.

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). Quantum structure of negation and conjunction in human thought. Frontiers in Psychology, 6.

  • Alcaro, A., Carta, S., & Panksepp, J. (2017). The affective core of the self: A neuro-archetypical perspective on the foundations of human (and Animal) subjectivity. Frontiers in Psychology, 8, 1–13.

    Article  Google Scholar 

  • Anderson, D.J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157(1), 187–200.

    Article  Google Scholar 

  • Atmanspacher, H. (1997). Cartesian cut, Heisenberg cut, and the concept of complexity. World Futures, 49(3), 333–355.

    Article  Google Scholar 

  • Atmanspacher, H., Filk, T., & Rȯmer, H. (2004). Quantum Zeno features of bistable perception. Biological Cybernetics, 90(1), 33–40.

    Article  Google Scholar 

  • Auletta, G. (2005). Quantum information as a general paradigm. Foundations of Physics, 35(5), 787–815.

    Article  Google Scholar 

  • Auletta, G. (2016). From Peirce’s semiotics to information-sign-symbol. Biosemiotics9(3), 451–466.

  • Auletta, G., & Torcal, L. (2014). Chance and events: The way in which nature surprises us. Biosemiotics, 7(3), 335–350.

    Article  Google Scholar 

  • Ballentine, L.E. (2016). Propensity, probability, and quantum theory. Foundations of Physics, 46(8), 973–1005.

    Article  Google Scholar 

  • Barrett, L.F. (2015). The conceptual act theory: A road map. In L.F. Barrett J.A. Russell (Eds.) The psychological construction of emotion, chapter 4. Guilford Press.

  • Barrett, L.F., & Bliss-Moreau, E. (2009). Affect as a psychological primitive. In Advances in experimental social psychology, chapter 4, (Vol. 41 pp. 167–218). Elsevier.

  • Bateson, G. (1972). Form, substance, and difference. In Steps to an ecology of mind, chapter 6.4. Jason Aronson Inc.

  • Beshkar, M. (2020). The QBIT theory of consciousness. Integrative Psychological and Behavioral Science.

  • Bohm, D., Hiley, B., & Kaloyerou, P. (1987). An ontological basis for the quantum theory. Physics Reports, 144(6), 321–375.

    Article  Google Scholar 

  • Brier, S. (1998). Cybersemiotics: A transdisciplinary framework for information studies. Biosystems, 46(1-2), 185–191.

    Article  Google Scholar 

  • Brower, D. (1949). The problem of quantification in psychological science. Psychological Review, 56(6), 325–333.

    Article  Google Scholar 

  • Bruza, P.D., & Cole, R.J. (2005). Quantum logic of semantic space: An exploratory investigation of context effects in practical reasoning. In S. Artemov, H. Barringer, S.A. d’Avila Garcez, L.C. Lamb, & J. Woods (Eds.) We will show them: Essays in honour of Dov Gabbay (pp. 339–361). London: College Publications.

  • Bruza, P.D., & Woods, J. (2008). Quantum collapse in semantic space: interpreting natural language argumentation. Second Quantum Interaction Symposium, 26–28.

  • Bubic, A., Yves von Cramon, D., & Schubotz, R.I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 1–15.

    Google Scholar 

  • Busemeyer, J.R., & Bruza, P.D. (2012). Quantum models of cognition and decision. Cambridge University Press.

  • Busemeyer, J.R., Pothos, E.M., Franco, R., & Trueblood, J.S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118(2), 193–218.

    Article  Google Scholar 

  • Cabello, A. (2017). Interpretations of quantum theory: A map of madness. In O. Lombardi, S. Fortin, F. Holik, & C. Lopez (Eds.) What is quantum information? (pp. 138–144). Cambridge: Cambridge University Press.

  • Ceylan, M.E., Dönmez, A., Ünsalver, B.Ö., Evrensel, A., & Kaya Yertutanol, F.D. (2017). The soul, as an uninhibited mental activity, is reduced into consciousness by rules of quantum physics. Integrative Psychological and Behavioral Science, 51(4), 582–597.

    Article  Google Scholar 

  • Chamovitz, D. (2012). What a plant knows: A field guide to the senses. Farrar, Straus and Giroux.

  • De Luca Picione, R., & Freda, M.F. (2016). The processes of meaning making, starting from the morphogenetic theories of René Thom. Culture and Psychology, 22(1), 139–157.

    Article  Google Scholar 

  • de Mul, J. (2021). The living sign. Reading noble from a biosemiotic perspective. Biosemiotics, 14(1), 107–113.

    Article  Google Scholar 

  • De Saussure, F. (1959). Course in general linguistics. New York: The Philosophical Library.

    Google Scholar 

  • Deacon, T.W. (2021). How molecules became signs. Biosemiotics, (0123456789).

  • Deng, D.-L., Li, X., & Das Sarma, S. (2017). Quantum entanglement in neural network states. Physical Review X, 7(2), 021021.

    Article  Google Scholar 

  • Dennett, D. (2001). Are we explaining consciousness yet? Cognition, 79(1-2), 221–237.

    Article  Google Scholar 

  • U. Eco, & T.A. Sebeok (Eds.) (1983). The sign of three: Dupin, Holmes, Peirce. Bloomington: Indiana University Press.

  • Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169–200.

    Article  Google Scholar 

  • P. Ekman, & R.J. Davidson (Eds.) (1994). The nature of emotion: Fundamental questions. New York: Oxford University Press.

  • Favareau, D. (2009). The logic of signs. In Essential readings in biosemiotics, chapter 3 (pp. 115–148). Springer.

  • Favareau, D. (2021). Facing up to the hard problem of biosemiotics. Biosemiotics.

  • Fehr, B., & Russell, J.A. (1984). Concept of emotion viewed from a prototype perspective. Journal of Experimental Psychology: General, 113(3), 464–486.

    Article  Google Scholar 

  • Feynman, R.P., Leyton, R.B., & Sands, M. (1964). Feynman lectures in physics. vol. III.

  • Field, S. (2005). Screenplay: The foundations of screenwriting. Delta.

  • Fontaine, J.R., Scherer, K.R., Roesch, E.B., & Ellsworth, P.C. (2007). The world of emotions is not two-dimensional. Psychological Science, 18(12), 1050–1057.

    Article  Google Scholar 

  • Gabora, L., & Kitto, K. (2013). Concept combination and the origins of complex cognition. In L. Swan (Ed.) Origins of Mind. Biosemiotics, (Vol. 8 pp. 361–381). Springer.

  • Gabora, L., & Kitto, K. (2017). Toward a quantum theory of humor. Frontiers in Physics, 4, 1–10.

    Article  Google Scholar 

  • Galea, D., Bruza, P., Kitto, K., & Nelson, D. (2012). Modelling word activation in semantic networks: Three scaled entanglement models compared. In International symposium on quantum interaction (pp. 172–183).

  • Galofaro, F., Toffano, Z., & Doan, B.-L. (2018). A quantum-based semiotic model for textual semantics. Kybernetes, 47(2), 307–320.

    Article  Google Scholar 

  • Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193(2), 559–582.

    Article  Google Scholar 

  • Gross, J.J., & Feldman Barrett, L. (2011). Emotion generation and emotion regulation: One or two depends on your point of view. Emotion Review, 3(1), 8–16.

    Article  Google Scholar 

  • Grössing, G. (1997). Quantum information in an evolutionary perspective. World Futures, 50(1-4), 511–522.

    Article  Google Scholar 

  • Grygar, F. (2017). Bohr’s complementarity framework in biosemiotics. Biosemiotics, 10(1), 33–55.

    Article  Google Scholar 

  • Gu, S., Wang, F., Patel, N.P., Bourgeois, J.A., & Huang, J.H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in Psychology, 10.

  • Haven, E., & Khrennikov, A. (2013). Quantum social science. New York: Cambridge University Press.

    Book  Google Scholar 

  • Heisenberg, W. (1958). Physics und Philosophy. The Revolution in Modern Science. Penguin Books.

  • Hernández-Fernández, A. (2021). Qualitative and quantitative examples of natural and artificial phenomena. Biosemiotics, 14(2), 377–390.

    Article  Google Scholar 

  • Hevner, K. (1936). Experimental studies of the elements of expression in music. The American Journal of Psychology, 48(2), 246.

    Article  Google Scholar 

  • Hoffmeyer, J., & Emmeche, C. (1991). Code-duality and the semiotics of nature. In On semiotic modeling (pp. 117–166). De Gruyter Mouton.

  • Izard, C.E. (1977). Human emotions. New York: Springer.

    Book  Google Scholar 

  • Jack, R.E., Sun, W., Delis, I., Garrod, O.G.B., & Schyns, P.G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708–730.

    Article  Google Scholar 

  • Jaeger, G. (2007). Quantum information: An overview. New York: Springer.

    Google Scholar 

  • Jaeger, G. (2017). “Wave-packet reduction” and the quantum character of the actualization of potentia. Entropy, 19(10).

  • Jedlicka, P. (2017). Revisiting the quantum brain hypothesis: Toward quantum (neuro)biology? Frontiers in Molecular Neuroscience, 10, 1–8.

    Article  Google Scholar 

  • Johnson-Laird, P.N., & Oatley, K. (1992). Basic emotions, rationality, and folk theory. Cognition and Emotion, 6(3-4), 201–223.

    Article  Google Scholar 

  • Kauffman, S. (2020). Eros and Logos. Angelaki - Journal of the Theoretical Humanities, 25(3), 9–23.

    Google Scholar 

  • Kauffman, S.A., & Gare, A. (2015). Beyond descartes and Newton: Recovering life and humanity. Progress in Biophysics and Molecular Biology, 119 (3), 219–244.

    Article  Google Scholar 

  • Kawade, Y. (2009). On the nature of the subjectivity of living things. Biosemiotics, 2(2), 205–220.

    Article  Google Scholar 

  • Khrennikov, A. (2009a). Contextual approach to quantum formalism. Netherlands, Dordrecht: Springer.

    Book  Google Scholar 

  • Khrennikov, A. (2009b). Quantum-like model of cognitive decision making and information processing. BioSystems, 95(3), 179–187.

    Article  Google Scholar 

  • Khrennikov, A. (2010). Ubiquitous quantum structure. From psychology to finance. Berlin, Heidelberg: Springer Berlin Heidelberg.

    Book  Google Scholar 

  • Khrennikov, A. (2015). Quantum-like modeling of cognition. Frontiers in Physics, 3(77), 77.

    Google Scholar 

  • Kitto, K., Ramm, B., Sitbon, L., & Bruza, P. (2011). Quantum theory beyond the physical: Information in Context. Axiomathes, 21(2), 331–345.

    Article  Google Scholar 

  • Kolmogorova, A., Kalinin, A., & Malikova, A. (2021). Semiotic function of empathy in text emotion assessment. Biosemiotics, 14(2), 329–344.

    Article  Google Scholar 

  • Kull, K. (2019). Steps towards the natural meronomy and taxonomy of semiosis: Emon between index and symbol? Sign Systems Studies, 47(1/2), 88–104.

    Article  Google Scholar 

  • Lacková, L., & Faltýnek, D. (2021). Can quantitative approaches develop bio/semiotic theory? Biosemiotics, 14(2), 237–240.

    Article  Google Scholar 

  • Lakoff, G. (1990). The Invariance Hypothesis: is abstract reason based on image-schemas? Cognitive Linguistics, 1(1), 39–74.

    Article  Google Scholar 

  • Lazarus, R.S. (1991a). Emotion and adaptation. New York: Oxford University Press.

    Google Scholar 

  • Lazarus, R.S. (1991b). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46(8), 819–834.

    Article  Google Scholar 

  • Le Bellac, M. (2006). A short introduction to quantum information and quantum computation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lewis, A. (2021). A semiotic modern synthesis: Conducting quantitative studies in zoosemiotics and interpreting existing ethological studies through a semiotic framework. Biosemiotics, 14(2), 295–327.

    Article  Google Scholar 

  • Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., & Barrett, L.F. (2012). The brain basis of emotion: A meta-analytic review. Behavioral and Brain Sciences, 35(3), 121–143.

    Article  Google Scholar 

  • Lorenz, K. (2002). Man meets dog. Evanston: Routledge.

    Google Scholar 

  • Lorenz, K. (2005). On agression. Evanston: Routledge.

    Book  Google Scholar 

  • Lorenz, K.Z. (1974). Analogy as a source of knowledge. Science, 185(4147), 229–234.

    Article  Google Scholar 

  • Madill, A., & Gough, B. (2008). Qualitative research and its place in psychological science. Psychological Methods, 13(3), 254–271.

    Article  Google Scholar 

  • Marin, J.M. (2009). ‘Mysticism’ in quantum mechanics: the forgotten controversy. European Journal of Physics, 30(4), 807–822.

    Article  Google Scholar 

  • Markoš, A. (2011). Hermeneutics by the living. Biosemiotics, 4 (2), 119–125.

    Article  Google Scholar 

  • Markoš, A., & Cvrčková, F. (2013). The meaning(s) of information, code... and meaning. Biosemiotics, 6(1), 61–75.

    Article  Google Scholar 

  • Maruyama, Y. (2020). Quantum physics and cognitive science from a wittgensteinian perspective: Bohr’s classicism, Chomsky’s Universalism, and Bell’s contextualism. New York: Springer International Publishing.

    Google Scholar 

  • Matsuno, K. (2020). Making the onset of semiosis comprehensible with use of quantum physics. Biosemiotics, 13(2), 271–283.

    Article  Google Scholar 

  • Mehrabian, A. (1996). Pleasure-Arousal-Dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology, 14(4), 261–292.

    Article  Google Scholar 

  • Meier, C.A. (2001). Atom and archetype. The Pauli/Jung Letters. Princeton: Princeton University Press.

    Google Scholar 

  • Melkikh, A.V., & Khrennikov, A. (2015). Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes. Progress in Biophysics and Molecular Biology, 119(2), 137–161.

    Article  Google Scholar 

  • Melucci, M. (2015). Introduction to information retrieval and quantum mechanics, volume 35 of The Information Retrieval Series. Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  • Merali, Z. (2015). Quantum physics: What is really real? Nature, 521(7552), 278–280.

    Article  Google Scholar 

  • Mermin, N.D. (1981). Quantum mysteries for anyone. The Journal of Philosophy, 78(7), 397–408.

    Article  Google Scholar 

  • Merrell, F. (2001). Distinctly human Umwelt? Semiotica, 2001 (134), 229–262.

    Article  Google Scholar 

  • Miller, G.A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63 (2), 81–97.

    Article  Google Scholar 

  • Minev, Z.K., Mundhada, S.O., Shankar, S., Reinhold, P., Gutiérrez-Jáuregui, R., Schoelkopf, R.J., Mirrahimi, M., Carmichael, H.J., & Devoret, M.H. (2019). To catch and reverse a quantum jump mid-flight. Nature, 570(7760), 200–204.

    Article  Google Scholar 

  • Morf, M.E. (2018). Agency, chance, and the scientific status of psychology. Integrative Psychological and Behavioral Science, 52(4), 491–507.

    Article  Google Scholar 

  • Nielsen, M.A., & Chuang, I.L. (2010). Quantum computation and quantum information, 10th edn. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ollivier, H., Poulin, D., & Zurek, W.H. (2004). Objective properties from subjective quantum states: environment as a witness. Physical Review Letters, 93(22), 220401.

  • Osgood, C.E. (1952). The nature and measurement of meaning. Psychological Bulletin, 49(3), 197–237.

    Article  Google Scholar 

  • Osgood, C.E. (1962). Studies on the generality of affective meaning systems. American Psychologist, 17(1), 10–28.

    Article  Google Scholar 

  • Osipov, G.S., Panov, A.I., & Chudova, N.V. (2014). Behavior control as a function of consciousness. I. World model and goal setting. Journal of Computer and Systems Sciences International, 53(4), 517–529.

    Article  Google Scholar 

  • Panksepp, J. (1998). Emotional operating systems and subjectivity. In Affective neuroscience: The foundations of human and animal emotions, chapter 2. Oxford University Press.

  • Panksepp, J. (2005). On the embodied neural nature of core emotional affects. Journal of Consciousness Studies, 12(8-10 SPEC. ISS.), 158–184.

    Google Scholar 

  • Pattee, H.H. (1970). How does a molecule become a message? Communication in Development, 16(1969), 1–16.

    Google Scholar 

  • Pattee, H.H. (1972). Physical problems of decision-making constraints. International Journal of Neuroscience, 3(3), 99–105.

    Article  Google Scholar 

  • Pattee, H.H. (1978). The complementarity principle in biological and social structures. Journal of Social and Biological Systems, 1(2), 191–200.

    Article  Google Scholar 

  • Pattee, H.H. (1979). The complementarity principle and the origin of macromolecular information. Biosystems, 11(2-3), 217–226.

    Article  Google Scholar 

  • Pattee, H.H. (1982). Cell psychology: An evolutionary approach to the symbol-matter problem. Cognition and Brain Theory, 5(4), 325–341.

    Google Scholar 

  • Pattee, H.H. (1995). Artificial life needs a real epistemology. In F. Morán, A. Moreno, J.J. Merelo, & P. Chacón (Eds.) Advances in Artificial Life. ECAL 1995. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence), (Vol. 929 pp. 21–38).

  • Peil, K.T. (2014). Emotion: The self-regulatory sense. Global Advances in Health and Medicine, 3(2), 80–108.

    Article  Google Scholar 

  • Peirce, C.S. (1991). Peirce on signs. Writings on semiotic by Charles Sanders Peirce. Chapel Hill: The University of North Carolina Press.

    Google Scholar 

  • Pereira, A., & Almada, L.F. (2011). Conceptual spaces and consciousness: Integrating cognitive and affective processes. International Journal of Machine Consciousness, 3(1), 127–143.

    Article  Google Scholar 

  • Petrenko, V.F., & Suprun, A.P. (2015). Methodology of psychosemantics in the context of the philosophy of postnonclassical rationality and quantum physics. Herald of the Russian Academy of Sciences, 85(5), 434–442.

    Article  Google Scholar 

  • Piantadosi, S.T. (2020). The computational origin of representation. Minds and Machines.

  • F.-A. Popp, & L. Beloussov (Eds.) (2003). Integrative biophysics. Dordrecht: Springer.

  • Queiroz, J., & Merrell, F. (2006). Semiosis and pragmatism: Toward a dynamic concept of meaning. Sign Systems Studies, 34(1), 37–65.

    Article  Google Scholar 

  • Rosen, R. (1996). Biology and the measurement problem. Computers and Chemistry, 20(1), 95–100.

    Article  Google Scholar 

  • Russell, J.A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178.

    Article  Google Scholar 

  • Russell, J.A. (2009). Emotion, core affect, and psychological construction. Cognition & Emotion, 23(7), 1259–1283.

    Article  Google Scholar 

  • Russell, J.A., & Barrett, L.F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76(5), 805–819.

    Article  Google Scholar 

  • Salthe, S.N. (2014). Creating the Umwelt: From chance to choice. Biosemiotics, 7(3), 351–359.

    Article  Google Scholar 

  • Salvatore, S., & Freda, M.F. (2011). Affect, unconscious and sensemaking. A psychodynamic, semiotic and dialogic model. New Ideas in Psychology, 29(2), 119–135.

    Article  Google Scholar 

  • Scherer, K.R., Shuman, V., Fontaine, J.R.J., & Soriano, C. (2013). The GRID meets the Wheel: Assessing emotional feeling via self-report1. In Components of emotional meaning (pp. 281–298). Oxford University Press.

  • Scherer, K.R., Wranik, T., Sangsue, J., Tran, V., & Scherer, U. (2004). Emotions in everyday life: Probability of occurrence, risk factors, appraisal and reaction patterns. Social Science Information, 43(4), 499–570.

    Article  Google Scholar 

  • Schlosberg, H. (1952). The description of facial expressions in terms of two dimensions. Journal of Experimental Psychology, 44(4), 229–237.

    Article  Google Scholar 

  • Schlosberg, H. (1954). Three dimensions of emotion. Psychological Review, 61(2), 81–88.

    Article  Google Scholar 

  • Schrödinger, E. (1944). What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schrödinger, E. (1952). Are there quantum jumps? British Journal for the Philosophy of Science, 3(11), 94–95.

    Article  Google Scholar 

  • Sebeok, T.A. (2001). Biosemiotics: Its roots, proliferation, and prospects. Semiotica, 134, 61–78.

    Article  Google Scholar 

  • Seger, L. (2010). Making a good script great. Revised & Expanded. 3rd edn. Silman-James Press.

  • Selesnick, S.A., & Piccinini, G. (2018). Quantum-like behavior without quantum physics II. A quantum-like model of neural network dynamics. Journal of Biological Physics, 44(4), 501–538.

    Article  Google Scholar 

  • Sevush, S. (2006). Single-neuron theory of consciousness. Journal of Theoretical Biology, 238(3), 704–725.

    Article  Google Scholar 

  • Sharov, A., & Tønnessen, M. (2021). Semiotic agency volume 25 of biosemiotics. Cham: Springer International Publishing.

    Book  Google Scholar 

  • Sharov, A.A. (2010). Functional information: Towards synthesis of biosemiotics and cybernetics. Entropy, 12(5), 1050–1070.

    Article  Google Scholar 

  • Shaver, P., Schwartz, J., Kirson, D., & O’Connor, C. (1987). Emotion knowledge: Further exploration of a prototype approach. Journal of Personality and Social Psychology, 52(6), 1061–1086.

    Article  Google Scholar 

  • Smedslund, J. (2016). Why psychology cannot be an empirical science. Integrative Psychological and Behavioral Science, 50(2), 185–195.

    Article  Google Scholar 

  • Sokolov, E.N., & Boucsein, W. (2000). A psychophysiological model of emotion space. Integrative Physiological and Behavioral Science, 35(2), 81–119.

    Article  Google Scholar 

  • Storm, C., & Storm, T. (1987). A taxonomic study of the vocabulary of emotions. Journal of Personality and Social Psychology, 53(4), 805–816.

    Article  Google Scholar 

  • Suppes, P., de Barros, J.A., & Oas, G. (2012). Phase-oscillator computations as neural models of stimulus-response conditioning and response selection. Journal of Mathematical Psychology, 56(2), 95–117.

    Article  Google Scholar 

  • Surov, I.A. (2021a). Quantum cognitive triad: Semantic geometry of context representation. Foundations of Science, 26(4), 947–975.

    Article  Google Scholar 

  • Surov, I. A. (2021b). Quantum core affect. Process-semantic theory of emotions. Preprints: 2021110379.

  • Surov, I. A. (2021c). Quantum process semantics. Preprints: 2021090006.

  • Surov, I.A., Semenenko, E., Platonov, A.V., Bessmertny, I.A., Galofaro, F., Toffano, Z., Khrennikov, A., & Alodjants, A.P. (2021). Quantum semantics of text perception. Scientific Reports, 11(1), 4193.

    Article  Google Scholar 

  • Tarlacı, S. (2010). A historical view of the relation between quantum mechanics and the brain: A neuroquantologic perspective. NeuroQuantology, 8(2), 120–136.

    Article  Google Scholar 

  • Thom, R. (1990). Semio physics: A sketch. Reading, MA: Addison-Wesley Publishing Company.

    Google Scholar 

  • Tomkins, S.S. (1981). The quest for primary motives: Biography and autobiography of an idea. Journal of Personality and Social Psychology, 41(2), 306–329.

    Article  Google Scholar 

  • Tomkins, S.S., & Mccarter, R. (1964). What and where are the primary affects? Some evidence for a theory. Perceptual and Motor Skills, 18, 119–158.

    Article  Google Scholar 

  • Valsiner, J. (2001). Process structure of semiotic mediation in human development. Human Development, 44(2-3), 84–97.

    Article  Google Scholar 

  • van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21(5), 615–628.

    Article  Google Scholar 

  • van Hemmen, J.L. (2021). Mathematization of nature: How it is done. Biological Cybernetics, 115(6), 655–664.

    Article  Google Scholar 

  • Vartanov, A.V., & Vartanova, I.I. (2018). Four-dimensional spherical model of emotions. Procedia Computer Science, 145, 604–610.

    Article  Google Scholar 

  • von Uexküll, J. (1982). The theory of meaning. Semiotica, 42 (1), 61–76.

    Article  Google Scholar 

  • von Uexküll, J. (1992). A stroll through the worlds of animals and men: A picture book of invisible worlds. Semiotica, 89(4), 319–391.

    Article  Google Scholar 

  • von Uexküll, J. (2010). A foray into the worlds of animals and humans: With a theory of meaning. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Wang, F., Yang, J., Pan, F., Ho, R.C., & Huang, J.H. (2020a). Editorial: Neurotransmitters and emotions. Frontiers in Psychology, 11, 10–12.

    Google Scholar 

  • Wang, Z., Ho, S.-B., & Cambria, E. (2020b). A review of emotion sensing: Categorization models and algorithms. Multimedia Tools and Applications, 79(47-48), 35553–35582.

    Article  Google Scholar 

  • Weber, A. (2011). The book of desire: Toward a biological poetics. Biosemiotics, 4(2), 149–170.

    Article  Google Scholar 

  • Wendt, A. (2015). Quantum mind and social science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wills, P.R. (2019). Reflexivity, coding and quantum biology. BioSystems, 185, 104027.

    Article  Google Scholar 

  • Wu, S., Li, J., Zhang, P., & Zhang, Y. (2021). Natural language processing meets quantum physics: A survey and categorization. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 3172–3182.

  • Yearsley, J.M., & Pothos, E.M. (2016). Zeno’s paradox in decision-making. Proceedings of the Royal Society B: Biological Sciences, 283(1828), 20160291.

    Article  Google Scholar 

  • Yik, M., Russell, J.A., & Steiger, J.H. (2011). A 12-point circumplex structure of core affect. Emotion, 11(4), 705–731.

    Article  Google Scholar 

  • Yik, M.S.M., Russell, J.A., & Barrett, L.F. (1999). Structure of self-reported current affect: Integration and beyond. Journal of Personality and Social Psychology, 77(3), 600–619.

    Article  Google Scholar 

  • Young, G. (2016). Stimulus–organism–response model: SORing to new heights. In Unifying causality and psychology, chapter 28 (pp. 699–717). Cham: Springer International Publishing.

  • Zipf, G.K. (1942). The unity of nature, least-action, and natural social science. Sociometry, 5(1), 48–62.

    Article  Google Scholar 

  • Zurek, W.H. (1991). Decoherence and the transition from quantum to classical. Physics Today, 44(10), 36–44.

    Article  Google Scholar 

Download references

Acknowledgements

About one third of the text is reproduced after preceding paper (Surov, 2021b).

Funding

The research was funded by a grant of Russian Science Foundation (project number 20-71-00136)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya A. Surov.

Ethics declarations

Competing interests

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surov, I.A. Natural Code of Subjective Experience. Biosemiotics 15, 109–139 (2022). https://doi.org/10.1007/s12304-022-09487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-022-09487-7

Keywords

Navigation