Skip to main content
Log in

The importance of deviation amplifying circuits for the understanding of the course of evolution

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Summary

The importance of deviation-amplifying processes for the emergence of major evolutionary novelties is discussed by exemplifying the evolution of birds and the term ‘chain evolution’ is proposed.

It is suggested that the importance of deviation-amplifying networks for the evolution of major systematic groups indicates that the changes leading to the origin of these groups progressed within a single genetic pool. The probability of polyphyletic origin of such taxonomic units as Tetrapoda, or Mammalia is regarded as extremely low.

The diversity of the structure of the central nervous system in different vertebrate groups is explained as resulting from multiple connections between it and the biology of the group. These connections form networks which may act either in a stabilizing or a deviation-amplifying way. Some examples of the networks are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartholomew, G. A. (1970). A model for the evolution of Pinniped polygyny.-Evolution24, p. 546–559.

    Google Scholar 

  • Behnke, R. J. (1970). The application of cytogenetic and biochemical systematics to phylogenetic problems in the family Salmonidae.-Trans. Amer. Fish. Soc.99, P. 237–248.

    Google Scholar 

  • Bielicki, T. (1965). The intensity of feedbacks between physical and cultural evolution.-Int. Social. Sci. J.17, p. 97–99.

    Google Scholar 

  • Bielicki, T. (1969). Niektóre zwiazki zwrotne w procesie ewolucji Hominidae. (Polish with English summary).-Mater. Prace Antropol. Wrocław,77, p. 3–60.

    Google Scholar 

  • Bishop, J. A. (1969). Changes in genetic constitution of a population ofSphaeroma rugicauda (Crustacea, Isopoda).-Evolution23, p. 589–601.

    Google Scholar 

  • Bock, W. J. (1968). Phylogenetic systematics, cladistics and evolution.-Evolution22, p. 646–648.

    Google Scholar 

  • Carey, F. G. &J. M. Teal (1969). Mako and porbeagle: warm bodied sharks.-Comp. Biochem. Physiol.28, p. 199–204.

    Google Scholar 

  • Dullemeijer, P. (1968). Some methodology problems in a holistic approach to functional morphology.-Acta Biotheor.18, p. 203–214.

    Google Scholar 

  • Gordon, M. S., K. Schmidt-Nielsen &H. M. Kelly (1961). Osmotic regulation in the crab eating frog,Rana cancrivora.-J. exp. Biol.39, p. 659–678.

    Google Scholar 

  • Heyer, W. R. (1969). The adaptive ecology of the species groups of the genusLeptodactylus (Amphibia, Leptodactylidae).-Evolution23, p. 421–428.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics.-Urbana, 263 p.

  • Himsted, W. (1969). Zur Funktion eines Reizfiltermechanismus im visuellen System von Urodelen.-Z. vergl. Physiol.62, p. 197–204.

    Google Scholar 

  • Hopson, J. A. &A. W. Crompton (1969). Origin of mammals.-Evolution. Biol.3, p. 15–72.

    Google Scholar 

  • Jarvik, E. (1968). Aspects of vertebrate phylogeny. In: Nobel Symposium 4, Current problems of lower vertebrate phylogeny. Stockholm, p. 497–527.

  • Jenkins, F. A. Jr. (1970). Cynodont postcranial anatomy and the ‘prototherian’ level of mammalian organization.-Evolution24, p. 230–252.

    Google Scholar 

  • Kielan-Jaworowska, Z. (1970). Unknown structures in multituberculate skull.-Nature226, p. 974–976.

    Google Scholar 

  • Kirsch, J. A. W. (1969). Serological data and phylogenetic inference: the problems of rate of change.-Syst. Zool.18, p. 296–311.

    Google Scholar 

  • Lissman, H. W. (1958). On the function and evolution of electric organs in fish.-J. exp. Biol.35, p. 156–191.

    Google Scholar 

  • Lissman, H. W. &Machin, K. E. (1958). The mechanism of object location inGymnarchus niloticus and similar fish.-J. exp. Biol.35, p. 451–486.

    Google Scholar 

  • Maruyama, M. (1963). The second cybernetics: deviation amplifying mutual causal processes.-Amer. Scient.51, p. 164–179.

    Google Scholar 

  • Maturana, H. R., J. Y. Lettvin, W. S. McCulloch &W. H. Pitts (1960). Anatomy and physiology of vision in the frog,Rana pipiens.-J. gen. Physiol.43, P. 129–175.

    Google Scholar 

  • Mayr, E. (1963). Evolution at the species level. In: ‘Ideas in modern biology’, J. A.Moore, Ed., p. 313–325.

  • Mayr, E. (1965). Classification and phylogeny.-Amer. Zool.5, p. 165–174.

    Google Scholar 

  • Merrel, D. J. &Ch. F. Rodell (1968). Seasonal selection of the leopard frog,Rana pipiens.-Evolution22, p. 264–288.

    Google Scholar 

  • Nelson, G. J. (1969). Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates.-Bull. Amer. Mus. Nat. Hist.141, p. 475–552.

    Google Scholar 

  • Nissen, H. W. (1958). Axes of behavioral comparison. In ‘Behavior and evolution’, Roe & Simpson Edts., New Haven, p. 183–205.

    Google Scholar 

  • Parsons, T. S. &E. E. Williams (1963). The relationships of the modern amphibia.-Quart. Rev. Biol.38, p. 26–53.

    Google Scholar 

  • Rensch, B. (1967). The evolution of brain achievements.-Evolution. Biol.1, p. 26–68.

    Google Scholar 

  • Schmalhausen, I. I. (1960). Evolution and cybernetics.-Evolution14, quoted after I. I.Schmalhausen (1968), Kibernetitcheskie voprosy biologii. Novosi-birsk., p. 223. (in Russian).

  • Semeonoff, R. &F. W. Robertson (1967). A biochemical and ecological study of plasma esterase polymorphism in natural populations of the field vole,Microtus agrestis.-Biochem. Genet.1, p. 205–227.

    Google Scholar 

  • Schober, W. (1966). Vergleichende Beobachtungen am Telencephalon niederer Wirbeltiere. In: ‘Evolution of the forebrain’, Stuttgart, p. 20–31.

  • Selander, R. K., S. Y. Yang, R. C. Lewontin &W. E. Johnson (1970). Genetic variation in the horseshoe crab,Limilus polyphemus, a phylogenetic ‘relic’.-Evolution24, p. 402–414.

    Google Scholar 

  • Simpson, G. G. (1947). Tempo and mode in evolution. New York, p. 237.

  • Simpson, G. G. (1958). Behavior and evolution. In: ‘Behavior and evolution’, New Haven, p. 507–535.

  • Simpson, G. G. (1961). Principles of animal taxonomy. New York, p. 247.

  • Starck, D. (1962). Die Evolution des Säugetiergehirns.-Sitzungsb. Wiss. Ges. Goethe-Univ. Frankfurt/M.,1, p. 23–60.

    Google Scholar 

  • Strelnikov, I. D. (1970). Anatomo-fiziologicheskie osnowy vidoobrazovania pozvonochnikh. Leningrad, p. 368. (In Russian).

  • Szarski, H. (1962). The origin of the amphibia.-Quart. Rev. Biol.37, p. 189–241.

    Google Scholar 

  • Szarski, H. (1964). The structure of respiratory organs in relation to body size in amphibia.-Evolution18; p. 118–126.

    Google Scholar 

  • Szarski, H. (1967). Historia zwierzat kregowych. Warszawa, p. 467. (in Polish).

  • Thomson, K. S. (1968). A critical review of the diphyletic theory of rhipidistian-amphibian relationship. Nobel Symposium 4. Current problems of lower vertebrate phylogeny. Stockholm, p. 285–305.

  • Thomson, K. S. (1969). The biology of the lobe-finned fishes.-Biol. Rev.44, p. 91–154.

    Google Scholar 

  • Wahlert, G.von (1963). Die ökologische und evolutorische Bedeutung der Fischschwärme.—Veröff. Inst. Meeresforsch. Bremerhaven. III. meeresbiol. Symp. Bremen, p. 197–213.

  • Wahlert, G.von (1968).Latimeria und die Geschichte der Wirbeltiere. Stuttgart, p. 125.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarski, H. The importance of deviation amplifying circuits for the understanding of the course of evolution. Acta Biotheor 20, 158–170 (1971). https://doi.org/10.1007/BF01556688

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01556688

Keywords

Navigation