Skip to main content
Log in

Proof theory for heterogeneous logic combining formulas and diagrams: proof normalization

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We extend natural deduction for first-order logic (FOL) by introducing diagrams as components of formal proofs. From the viewpoint of FOL, we regard a diagram as a deductively closed conjunction of certain FOL formulas. On the basis of this observation, we first investigate basic heterogeneous logic (HL) wherein heterogeneous inference rules are defined in the styles of conjunction introduction and elimination rules of FOL. By examining what is a detour in our heterogeneous proofs, we discuss that an elimination-introduction pair of rules constitutes a redex in our HL, which is opposite the usual redex in FOL. In terms of the notion of a redex, we prove the normalization theorem for HL, and we give a characterization of the structure of heterogeneous proofs. Every normal proof in our HL consists of applications of introduction rules followed by applications of elimination rules, which is also opposite the usual form of normal proofs in FOL. Thereafter, we extend the basic HL by extending the heterogeneous rule in the style of general elimination rules to include a wider range of heterogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allwein, G., Barwise, J. (eds). Logical reasoning with diagrams. Oxford Studies. In: Logic And Computation Series (1996)

  2. Barker-Plummer, D., Barwise, J., Etchemendy, J.: Logical Reasoning With Diagrams & Sentences: Using Hyperproof. CSLI Publications, Stanford (2017)

    MATH  Google Scholar 

  3. Barker-Plummer, D., Etchemendy, J.: A computational architecture for heterogeneous reasoning. J. Exp. Theor. Artif. Intell. 19(3), 195–225 (2007)

    Article  Google Scholar 

  4. Barker-Plummer, D., Swoboda, N.: Reasoning with coincidence grids-A sequent-based logic and an analysis of complexity. J. Vis. Lang. Comput. 22(1), 56–65 (2011)

    Article  Google Scholar 

  5. Barwise, J., Etchemendy, J.: Hyperproof: For Macintosh. The Center for the Study of Language and Information Publications (1995)

  6. Dyckhoff, R.: Implementing a simple proof assistant. In: Proceedings of the Workshop on Programming for Logic Teaching, Leeds Centre for Theoretical Computer Science Proceedings 23(88), pp. 49–59 (1988)

  7. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39 176–210, 405–431 (1934). English Translation: Investigations into logical deduction, in M. E. Szabo, ed., The collected Papers of Gerhard Gentzen (1969)

  8. Hammer, E.: Reasoning with sentences and diagrams. Notre Dame J. Formal Logic 35(1), 73–87 (1994)

    Article  MathSciNet  Google Scholar 

  9. Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams. LMS Journal of Computation and Mathematics, Volume 8, 145–194, London Mathematical Society (2005)

  10. Johnson-Laird, P.N.: Mental Models: Toward a Cognitive Science of Language, Inference and Consciousness. Harvard University Press, Boston (1983)

    Google Scholar 

  11. López-Escobar, E.G.K.: Standardizing the N systems of Gentzen. In: Models, algebras, and proofs, Caicedo, X., Montenegro, C., (eds), Lecture Notes in Pure and Applied Mathematics, vol. 203, pp. 411–434 (1999)

  12. Mineshima, K., Okada, M., Takemura, R.: A Diagrammatic Inference System with Euler Circles. J. Logic Lang. Inf. 21(3), 365–391 (2012)

    Article  MathSciNet  Google Scholar 

  13. Mineshima, K., Okada, M., Takemura, R.: Two Types of diagrammatic inference systems: natural deduction style and resolution style. diagrammatic representation and inferenc. In: 6th International Conference, Diagrams 2010, Lecture Notes In Artificial Intelligence, Springer, pp. 99–114 (2010)

  14. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  15. Piecha, T., Schroeder-Heister, P. (eds.): Advances in Proof-Theoretic Semantics. Springer, Berlin (2016)

    MATH  Google Scholar 

  16. Prawitz, D.: Natural Deduction, Almqvist & Wiksell, 1965. Dover, Mineola (2006)

    Google Scholar 

  17. Prawitz, D.: Ideas and results in proof theory. In: Proceedings 2nd Scandinavian Logic Symposium, pp. 237–309 (1971)

  18. Rips, L.J.: The Psychology of Proof: Deductive Reasoning in Human Thinking. MIT Press, Cambridge (1994)

    Book  Google Scholar 

  19. Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Logic 49(4), 1284–1300 (1984)

    Article  MathSciNet  Google Scholar 

  20. Schroeder-Heister, P.: Validity concepts in proof-theoretic semantics. Synthese 148(3), 525–571 (2006)

    Article  MathSciNet  Google Scholar 

  21. Shin, S.-J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  22. Shimojima, A.: Semantic Properties of Diagrams and Their Cognitive Potentials. CSLI Publications, Stanford (2015)

    Google Scholar 

  23. Swoboda, N., Allwein, G.: Heterogeneous reasoning with Euler/Venn diagrams containing named constants and FOL. Electron. Notes Theor. Comput. Sci. 134, 153–187 (2005)

    Article  Google Scholar 

  24. Takemura, R.: Proof theory for reasoning with Euler diagrams: a logic translation and normalization. Stud. Logica 101(1), 157–191 (2013)

    Article  MathSciNet  Google Scholar 

  25. Takemura, R.: Towards a proof theory for heterogeneous logic combining sentences and diagrams. Diagrammatic Representation and Inference, Lecture Notes in Computer Science. Springer, pp. 607–623 (2018)

  26. Takemura, R., Shimojima, A., Katagiri, Y.: Logical investigation of reasoning with tables. Diagrammatic Representation and Inference, Lecture Notes in Computer Science, Springer 8578, 261–276 (2014)

  27. Tennant, N.: Autologic. Edinburgh University Press, Edinburgh (1992)

    Google Scholar 

  28. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  29. Urbas, M., Jamnik, M.: Heterogeneous Proofs: Spider diagrams meet higher-order provers. Interactive Theorem Proving, LNCS 6898, 376–382 (2011)

  30. van Dalen, D.: Logic and Structure, 4th edn. Springer, Berlin (2004)

    Book  Google Scholar 

  31. von Plato, J.: Natural deduction with general elimination rules. Arch. Math. Logic 40(7), 541–567 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Takemura.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemura, R. Proof theory for heterogeneous logic combining formulas and diagrams: proof normalization. Arch. Math. Logic 60, 783–813 (2021). https://doi.org/10.1007/s00153-020-00759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-020-00759-y

Keywords

Mathematics Subject Classification

Navigation