Skip to main content
Log in

Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path (LP) which lies at the heart of the deBroglie-Bohm “ pilot-wave” interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths (GLP). This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as GLP-parametrization, and of the associated quantum hydrodynamic equations. The remarkable aspect of the GLP approach presented here is that it realizes at the same time also a new solution method for the N-body Schrödinger equation. As an application, Gaussian-like particular solutions for the quantum probability density function (PDF) are considered, which are proved to be dynamically consistent. For them, the Schrödinger equation is reduced to a single Hamilton–Jacobi evolution equation. Particular solutions of this type are explicitly constructed, which include the case of free particles occurring in 1- or N-body quantum systems as well as the dynamics in the presence of suitable potential forces. In all these cases the initial Gaussian PDFs are shown to be free of the spreading behavior usually ascribed to quantum wave-packets, in that they exhibit the characteristic feature of remaining at all times spatially-localized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Which was formulated by Niels Bohr and Werner Heisenberg while collaborating in Copenhagen around 1927.

References

  1. de Broglie, L.: La structure atomique de la mati ère et du rayonnement et la Mécanique ondulatoire. C. R. Acad. Sci. Paris 184, 273 (1927)

    MATH  Google Scholar 

  2. de Broglie, L.: Sur le rôle des ondes continues en Mécanique ondulatoire. C. R. Acad. Sci. Paris 185, 380 (1927)

    MATH  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bohm, D.: A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bohm, D.: Reply to a criticism of a causal re-interpretation of the quantum theory. Phys. Rev. 87, 389 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  7. Bouda, A.: From a mechanical Lagrangian to the Schrö dinger equation. Int. J. Mod. Phys. A 18, 3347 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Holland, P.: Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation. Ann. Phys. 315, 505 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Poirier, B.: Bohmian mechanics without pilot waves. Chem. Phys. 370, 4 (2010)

    Article  ADS  Google Scholar 

  10. Holland, P.: In: Chattaraj, P. (ed.) Quantum Trajectories. CRC Press, Boca Raton (2010)

    Google Scholar 

  11. Poirier, B.: Trajectory-Based Derivation of Classical and Quantum Mechanics. In: Hughes, K.H., Parlant G. (eds.) Quantum Trajectories, CCP6, Daresbury Laboratory (2011)

  12. Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136, 031102 (2012)

    Article  ADS  Google Scholar 

  13. Parlant, G., Ou, Y.-C., Park, K., Poirier, B.: Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities. Comput. Theor. Chem. 990, 3 (2012)

    Article  Google Scholar 

  14. Wyatt, R.E.: Quantum wavepacket dynamics with trajectories: wavefunction synthesis along quantum paths. Chem. Phys. Lett. 313, 189 (1999)

    Article  ADS  Google Scholar 

  15. Wyatt, R.E., Lopreore, C.L., Parlant, G.: Electronic transitions with quantum trajectories. J. Chem. Phys. 114, 5113 (2001)

    Article  ADS  Google Scholar 

  16. Lopreore, C.L., Wyatt, R.E.: Electronic transitions with quantum trajectories. II. J. Chem. Phys. 116, 1228 (2002)

    Article  ADS  Google Scholar 

  17. Tsekov, R.: Bohmian mechanics versus Madelung quantum hydrodynamics. Ann. Univ. Sofia, Fac. Phys. Special Edition (2012) 112–119

  18. Bush, J.W.N.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269 (2015)

    Article  ADS  Google Scholar 

  19. Wyatt, R.: Quantum Dynamics with Trajectories. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Poirier, B., Parlant, G.: Reconcilling semiclassical and Bohmian mechanics. IV. Multisurface dynamics. J. Phys. Chem. A 111, 10400–10408 (2007)

    Article  Google Scholar 

  21. Cremaschini, C., Tessarotto, M.: Quantum theory of extended particle dynamics in the presence of EM radiation-reaction. Eur. Phys. J. Plus 130, 166 (2015)

    Article  Google Scholar 

  22. Dürr, D., Goldstein, S., Zanghì, N.: Bohmian Mechanics as the Foundation of Quantum Mechanics. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.) Bohmian Mechanics and Quantum Theory: An Appraisal. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  23. Deotto, E., Ghirardi, G.C.: Bohmian mechanics revisited. Found. Phys. 28, 1 (1998)

    Article  MathSciNet  Google Scholar 

  24. Allori, V., Zanghì, N.: What is Bohmian mechanics. Int. J. Theor. Phys. 43, 1743 (2004)

    Article  MathSciNet  Google Scholar 

  25. Tessarotto, M., Cremaschini, C.: “Ab initio” construction of the 2-point velocity-difference PDF for incompressible Navier-Stokes fluids. Eur. Phys. J. Plus 128, 84 (2013)

    Article  Google Scholar 

  26. Madelung, E.: Quantum theory in hydrodynamical form. Zeit. F. Phys. 40, 322 (1927)

    Article  ADS  MATH  Google Scholar 

  27. Tessarotto, M., Ellero, M., Nicolini, P.: Inverse kinetic theory for quantum hydrodynamic equations. Phys. Rev. A 75, 012105 (2007)

    Article  ADS  Google Scholar 

  28. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  29. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1933)

    Article  ADS  MATH  Google Scholar 

  30. Von Neumann, J.: Mathematische Grundlagen der Quantummechanik. Springer- Verlag (1932). English translations: Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955)

  31. Bell, J.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wiener, N., Siege, A.: A new form for the statistical postulate of quantum mechanics. Phys. Rev. 91, 1551 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Schrödinger, E.: The constant crossover of micro-to macro mechanics. Naturwissenschaften 14, 664 (1926)

    Article  ADS  Google Scholar 

  34. Zhang, W.M., Feng, D.H.: Wave-packet localization in nonlinear external potentials with dissipation. Phys. Rev. A. 52, 1746 (1995)

    Article  ADS  Google Scholar 

  35. Janossy, L.: Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys. 169, 79 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  36. Bocchieri, P., Loinger, A.: Nonexistence of the Aharonov-Bohm effect. Nuovo Cim. 47A, 475 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  37. Takabayasi, T.: Hydrodynamical formalism of quantum mechanics and Aharonov-Bohm effect. Prog. Theor. Phys. 69, 1323 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Padmanabhan, T.: Planck length as the lower bound to all physical length scales. Gen. Rel. Grav. 17, 215 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  39. Gross, D., Mende, P.: String theory beyond the Planck scale. Nucl. Phys. B 303, 407 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  40. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442, 593 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Mead, A.: Possible connection between gravitation and fundamental length. Phys. Rev. 135, 849 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Sprenger, M., Nicolini, P., Bleicher, M.: Neutrino oscillations as a novel probe for a minimal length. Class. Quant. Grav. 28, 235019 (2011)

    Article  ADS  MATH  Google Scholar 

  43. Sprenger, M., Nicolini, P., Bleicher, M.: Physics on the smallest scales: an introduction to minimal length phenomenology. Eur. J. Phys. 33, 853 (2012)

    Article  MATH  Google Scholar 

  44. Ehrenfest, P.: Bemerkung über die angenäherte Gü ltigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455 (1927)

    Article  ADS  MATH  Google Scholar 

  45. Klauder, J.R., Sudarshan, E.C.: Fundamentals of Quantum Optics. Benjamin, New York (1968)

    Google Scholar 

  46. Perelomov, A.M.: Generalized Coherent States and their Applications. Springer, Verlag (1986)

    Book  MATH  Google Scholar 

  47. Malkin, I.A., Man’ko, V.I.: Dynamical Symmetries and Coherent States of Quantum Systems. Nauka, Moscow (1979)

    Google Scholar 

  48. Bagrov, V.G., Gitman, D.M., Pereira, A.S.: Coherent and semiclassical states of a free particle. Phys. Uspekhi 57, 891–896 (2014)

    Article  ADS  Google Scholar 

  49. Heller, E.J.: Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62, 1544 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  50. Littlejohn, R.G.: The semiclassical evolution of wave packets. Phys. Rep. 138, 193 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  51. Bialynicki-Birula, I., Cirone, M.A., Dahl, J.P., Fedorov, M., Schleich, W.P.: In- and outbound spreading of a free-particle s-wave. Phys. Rev. Lett. 89, 060404 (2002)

    Article  ADS  Google Scholar 

  52. Shalashilin, D.V., Burghardt, I.: Gaussian-based techniques for quantum propagation from the time-dependent variational principle: formulation in terms of trajectories of coupled classical and quantum variables. J. Chem. Phys. 129, 084104 (2008)

    Article  ADS  Google Scholar 

  53. Pauli, W.: Wave Mechanics: Volume 5 of Pauli Lectures on Physics. Dover Books on Physics, 2000, ISBN 0486414620

  54. Abers, E.: Quantum Mechanics, Pearson edn. Addison Wesley, Prentice Hall Inc (2004). ISBN 978-0-13-146100-0

  55. Dunkel, J., Trigger, S.A.: Time-dependent entropy of simple quantum model systems. Phys. Rev. A. 71, 052102 (2005)

    Article  ADS  Google Scholar 

  56. Schiff, J., Poirier, B.: Sech wave packets, their Wigner functions and Bohmian trajectories. J. Phys. A. Math. Theor. 45, 405302 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Work developed within the research Projects of the Czech Science Foundation GAČR Grant No. 14-07753P (C.C.) and Albert Einstein Center for Gravitation and Astrophysics, Czech Science Foundation No. 14-37086G (M.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cremaschini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarotto, M., Cremaschini, C. Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics. Found Phys 46, 1022–1061 (2016). https://doi.org/10.1007/s10701-016-9989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-9989-7

Keywords

Navigation